Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Reducing sphingolipid synthesis orchestrates global changes to extend yeast lifespan.

Identifieur interne : 001015 ( Main/Corpus ); précédent : 001014; suivant : 001016

Reducing sphingolipid synthesis orchestrates global changes to extend yeast lifespan.

Auteurs : Jun Liu ; Xinhe Huang ; Bradley R. Withers ; Eric Blalock ; Ke Liu ; Robert C. Dickson

Source :

RBID : pubmed:23725375

English descriptors

Abstract

Studies of aging and longevity are revealing how diseases that shorten life can be controlled to improve the quality of life and lifespan itself. Two strategies under intense study to accomplish these goals are rapamycin treatment and calorie restriction. New strategies are being discovered including one that uses low-dose myriocin treatment. Myriocin inhibits the first enzyme in sphingolipid synthesis in all eukaryotes, and we showed recently that low-dose myriocin treatment increases yeast lifespan at least in part by down-regulating the sphingolipid-controlled Pkh1/2-Sch9 (ortholog of mammalian S6 kinase) signaling pathway. Here we show that myriocin treatment induces global effects and changes expression of approximately forty percent of the yeast genome with 1252 genes up-regulated and 1497 down-regulated (P < 0.05) compared with untreated cells. These changes are due to modulation of evolutionarily conserved signaling pathways including activation of the Snf1/AMPK pathway and down-regulation of the protein kinase A (PKA) and target of rapamycin complex 1 (TORC1) pathways. Many processes that enhance lifespan are regulated by these pathways in response to myriocin treatment including respiration, carbon metabolism, stress resistance, protein synthesis, and autophagy. These extensive effects of myriocin match those of rapamycin and calorie restriction. Our studies in yeast together with other studies in mammals reveal the potential of myriocin or related compounds to lower the incidence of age-related diseases in humans and improve health span.

DOI: 10.1111/acel.12107
PubMed: 23725375
PubMed Central: PMC3773046

Links to Exploration step

pubmed:23725375

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Reducing sphingolipid synthesis orchestrates global changes to extend yeast lifespan.</title>
<author>
<name sortKey="Liu, Jun" sort="Liu, Jun" uniqKey="Liu J" first="Jun" last="Liu">Jun Liu</name>
<affiliation>
<nlm:affiliation>Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu, 610064, China; Department of Molecular and Cellular Biochemistry and the Lucille Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY, 40536, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Huang, Xinhe" sort="Huang, Xinhe" uniqKey="Huang X" first="Xinhe" last="Huang">Xinhe Huang</name>
</author>
<author>
<name sortKey="Withers, Bradley R" sort="Withers, Bradley R" uniqKey="Withers B" first="Bradley R" last="Withers">Bradley R. Withers</name>
</author>
<author>
<name sortKey="Blalock, Eric" sort="Blalock, Eric" uniqKey="Blalock E" first="Eric" last="Blalock">Eric Blalock</name>
</author>
<author>
<name sortKey="Liu, Ke" sort="Liu, Ke" uniqKey="Liu K" first="Ke" last="Liu">Ke Liu</name>
</author>
<author>
<name sortKey="Dickson, Robert C" sort="Dickson, Robert C" uniqKey="Dickson R" first="Robert C" last="Dickson">Robert C. Dickson</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:23725375</idno>
<idno type="pmid">23725375</idno>
<idno type="doi">10.1111/acel.12107</idno>
<idno type="pmc">PMC3773046</idno>
<idno type="wicri:Area/Main/Corpus">001015</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001015</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Reducing sphingolipid synthesis orchestrates global changes to extend yeast lifespan.</title>
<author>
<name sortKey="Liu, Jun" sort="Liu, Jun" uniqKey="Liu J" first="Jun" last="Liu">Jun Liu</name>
<affiliation>
<nlm:affiliation>Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu, 610064, China; Department of Molecular and Cellular Biochemistry and the Lucille Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY, 40536, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Huang, Xinhe" sort="Huang, Xinhe" uniqKey="Huang X" first="Xinhe" last="Huang">Xinhe Huang</name>
</author>
<author>
<name sortKey="Withers, Bradley R" sort="Withers, Bradley R" uniqKey="Withers B" first="Bradley R" last="Withers">Bradley R. Withers</name>
</author>
<author>
<name sortKey="Blalock, Eric" sort="Blalock, Eric" uniqKey="Blalock E" first="Eric" last="Blalock">Eric Blalock</name>
</author>
<author>
<name sortKey="Liu, Ke" sort="Liu, Ke" uniqKey="Liu K" first="Ke" last="Liu">Ke Liu</name>
</author>
<author>
<name sortKey="Dickson, Robert C" sort="Dickson, Robert C" uniqKey="Dickson R" first="Robert C" last="Dickson">Robert C. Dickson</name>
</author>
</analytic>
<series>
<title level="j">Aging cell</title>
<idno type="eISSN">1474-9726</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Antifungal Agents (pharmacology)</term>
<term>Fatty Acids, Monounsaturated (pharmacology)</term>
<term>Gene Expression Regulation, Fungal (MeSH)</term>
<term>Longevity (physiology)</term>
<term>Signal Transduction (MeSH)</term>
<term>Sphingolipids (biosynthesis)</term>
<term>Yeasts (drug effects)</term>
<term>Yeasts (genetics)</term>
<term>Yeasts (metabolism)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="biosynthesis" xml:lang="en">
<term>Sphingolipids</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Antifungal Agents</term>
<term>Fatty Acids, Monounsaturated</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Yeasts</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Yeasts</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Yeasts</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Longevity</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Gene Expression Regulation, Fungal</term>
<term>Signal Transduction</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Studies of aging and longevity are revealing how diseases that shorten life can be controlled to improve the quality of life and lifespan itself. Two strategies under intense study to accomplish these goals are rapamycin treatment and calorie restriction. New strategies are being discovered including one that uses low-dose myriocin treatment. Myriocin inhibits the first enzyme in sphingolipid synthesis in all eukaryotes, and we showed recently that low-dose myriocin treatment increases yeast lifespan at least in part by down-regulating the sphingolipid-controlled Pkh1/2-Sch9 (ortholog of mammalian S6 kinase) signaling pathway. Here we show that myriocin treatment induces global effects and changes expression of approximately forty percent of the yeast genome with 1252 genes up-regulated and 1497 down-regulated (P < 0.05) compared with untreated cells. These changes are due to modulation of evolutionarily conserved signaling pathways including activation of the Snf1/AMPK pathway and down-regulation of the protein kinase A (PKA) and target of rapamycin complex 1 (TORC1) pathways. Many processes that enhance lifespan are regulated by these pathways in response to myriocin treatment including respiration, carbon metabolism, stress resistance, protein synthesis, and autophagy. These extensive effects of myriocin match those of rapamycin and calorie restriction. Our studies in yeast together with other studies in mammals reveal the potential of myriocin or related compounds to lower the incidence of age-related diseases in humans and improve health span. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">23725375</PMID>
<DateCompleted>
<Year>2014</Year>
<Month>06</Month>
<Day>11</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1474-9726</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>12</Volume>
<Issue>5</Issue>
<PubDate>
<Year>2013</Year>
<Month>Oct</Month>
</PubDate>
</JournalIssue>
<Title>Aging cell</Title>
<ISOAbbreviation>Aging Cell</ISOAbbreviation>
</Journal>
<ArticleTitle>Reducing sphingolipid synthesis orchestrates global changes to extend yeast lifespan.</ArticleTitle>
<Pagination>
<MedlinePgn>833-41</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/acel.12107</ELocationID>
<Abstract>
<AbstractText>Studies of aging and longevity are revealing how diseases that shorten life can be controlled to improve the quality of life and lifespan itself. Two strategies under intense study to accomplish these goals are rapamycin treatment and calorie restriction. New strategies are being discovered including one that uses low-dose myriocin treatment. Myriocin inhibits the first enzyme in sphingolipid synthesis in all eukaryotes, and we showed recently that low-dose myriocin treatment increases yeast lifespan at least in part by down-regulating the sphingolipid-controlled Pkh1/2-Sch9 (ortholog of mammalian S6 kinase) signaling pathway. Here we show that myriocin treatment induces global effects and changes expression of approximately forty percent of the yeast genome with 1252 genes up-regulated and 1497 down-regulated (P < 0.05) compared with untreated cells. These changes are due to modulation of evolutionarily conserved signaling pathways including activation of the Snf1/AMPK pathway and down-regulation of the protein kinase A (PKA) and target of rapamycin complex 1 (TORC1) pathways. Many processes that enhance lifespan are regulated by these pathways in response to myriocin treatment including respiration, carbon metabolism, stress resistance, protein synthesis, and autophagy. These extensive effects of myriocin match those of rapamycin and calorie restriction. Our studies in yeast together with other studies in mammals reveal the potential of myriocin or related compounds to lower the incidence of age-related diseases in humans and improve health span. </AbstractText>
<CopyrightInformation>© 2013 The Anatomical Society and John Wiley & Sons Ltd.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Liu</LastName>
<ForeName>Jun</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu, 610064, China; Department of Molecular and Cellular Biochemistry and the Lucille Markey Cancer Center, University of Kentucky College of Medicine, Lexington, KY, 40536, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Huang</LastName>
<ForeName>Xinhe</ForeName>
<Initials>X</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Withers</LastName>
<ForeName>Bradley R</ForeName>
<Initials>BR</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Blalock</LastName>
<ForeName>Eric</ForeName>
<Initials>E</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Liu</LastName>
<ForeName>Ke</ForeName>
<Initials>K</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Dickson</LastName>
<ForeName>Robert C</ForeName>
<Initials>RC</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>P20 GM103486</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 AG024377</GrantID>
<Acronym>AG</Acronym>
<Agency>NIA NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>AG024377</GrantID>
<Acronym>AG</Acronym>
<Agency>NIA NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>P20GM103486</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>07</Month>
<Day>08</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Aging Cell</MedlineTA>
<NlmUniqueID>101130839</NlmUniqueID>
<ISSNLinking>1474-9718</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000935">Antifungal Agents</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005229">Fatty Acids, Monounsaturated</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D013107">Sphingolipids</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>YRM4E8R9ST</RegistryNumber>
<NameOfSubstance UI="C001996">thermozymocidin</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000935" MajorTopicYN="N">Antifungal Agents</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005229" MajorTopicYN="N">Fatty Acids, Monounsaturated</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015966" MajorTopicYN="N">Gene Expression Regulation, Fungal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008136" MajorTopicYN="N">Longevity</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013107" MajorTopicYN="N">Sphingolipids</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="Y">biosynthesis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015003" MajorTopicYN="N">Yeasts</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">AMPK</Keyword>
<Keyword MajorTopicYN="N">S6 kinase</Keyword>
<Keyword MajorTopicYN="N">TORC1</Keyword>
<Keyword MajorTopicYN="N">aging</Keyword>
<Keyword MajorTopicYN="N">myriocin</Keyword>
<Keyword MajorTopicYN="N">sphingolipids</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="accepted">
<Year>2013</Year>
<Month>05</Month>
<Day>25</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>6</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>6</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>6</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23725375</ArticleId>
<ArticleId IdType="doi">10.1111/acel.12107</ArticleId>
<ArticleId IdType="pmc">PMC3773046</ArticleId>
<ArticleId IdType="mid">NIHMS489539</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Cell Mol Life Sci. 2002 Jun;59(6):903-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12169020</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2012 Mar 30;45(6):743-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22445487</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Rev. 2010 Nov;34(6):952-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20412306</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2011 Sep 2;146(5):682-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21884931</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2011 Dec;189(4):1177-201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22174183</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2005 Nov;4(11):1882-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16278455</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Metab. 2012 Jul 3;16(1):55-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22768839</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Metab. 2011 Jun 8;13(6):668-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21641548</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2012 Feb;8(2):e1002493</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22319457</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2000 Dec;11(12):4241-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11102521</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2011 Jul 1;286(26):23544-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21561858</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 1992 Apr;8(4):303-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1355328</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1999 Dec 9;402(6762):689-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10604478</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1996 Feb 15;10(4):382-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8600023</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1997 Aug;17(8):4282-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9234685</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Aging Cell. 2009 Aug;8(4):353-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19302372</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cells. 2008 Sep 30;26(3):299-307</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18679056</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Lipidol. 2010 Apr;21(2):128-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20216312</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2012 Feb;11(2):119-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22140226</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 2008;451:1-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19185709</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Aging (Albany NY). 2009 Jan;1(1):131-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20157595</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2012 Apr;13(4):251-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22436748</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2007 Jun 8;26(5):663-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17560372</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Jul 11;278(28):26146-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12676948</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2006 Jan 15;20(2):174-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16418483</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2009 Jul 16;460(7253):392-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19587680</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2010 Oct 1;21(19):3475-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20702584</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2011 Jul;81(2):515-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21707788</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Rev. 2012 Mar;36(2):306-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21658086</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Soc Trans. 2011 Apr;39(2):460-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21428920</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Syst Biol. 2009;5:245</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19225458</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2009 Oct 2;326(5949):140-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19797661</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2012 May 29;109(22):8652-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22589305</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Metab. 2012 Jul 3;16(1):18-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22768836</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2011 Dec;189(4):1145-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22174182</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2008 Jul;7(7):1127-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18469137</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Cycle. 2009 Apr 15;8(8):1256-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19305133</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Genet. 2006 May;49(5):281-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16397762</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2010 Apr 16;328(5976):321-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20395504</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2001 Apr 13;292(5515):288-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11292860</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Metab. 2010 Jun 9;11(6):453-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20519118</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Oct 6;106(40):17049-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19805182</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2010 Jul;6(7):e1001024</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20657825</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2009;4(1):44-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19131956</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Comp Funct Genomics. 2003;4(1):37-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18629096</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2011 Aug 3;30(15):3052-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21730963</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001015 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 001015 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:23725375
   |texte=   Reducing sphingolipid synthesis orchestrates global changes to extend yeast lifespan.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:23725375" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020