Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Cellular factors promoting resistance to effective treatment of glioma with oncolytic myxoma virus.

Identifieur interne : 000D68 ( Main/Corpus ); précédent : 000D67; suivant : 000D69

Cellular factors promoting resistance to effective treatment of glioma with oncolytic myxoma virus.

Auteurs : Franz J. Zemp ; Brienne A. Mckenzie ; Xueqing Lun ; Karlyne M. Reilly ; Grant Mcfadden ; V Wee Yong ; Peter A. Forsyth

Source :

RBID : pubmed:25336188

English descriptors

Abstract

Oncolytic virus therapy is being evaluated in clinical trials for human glioma. While it is widely assumed that the immune response of the patient to the virus infection limits the utility of the therapy, investigations into the specific cell type(s) involved in this response have been performed using nonspecific pharmacologic inhibitors or allogeneic models with compromised immunity. To identify the immune cells that participate in clearing an oncolytic infection in glioma, we used flow cytometry and immunohistochemistry to immunophenotype an orthotopic glioma model in immunocompetent mice after Myxoma virus (MYXV) administration. These studies revealed a large resident microglia and macrophage population in untreated tumors, and robust monocyte, T-, and NK cell infiltration 3 days after MYXV infection. To determine the role on the clinical utility of MYXV therapy for glioma, we used a combination of knockout mouse strains and specific immunocyte ablation techniques. Collectively, our experiments identify an important role for tumor-resident myeloid cells and overlapping roles for recruited NK and T cells in the clearance and efficacy of oncolytic MYXV from gliomas. Using a cyclophosphamide regimen to achieve lymphoablation prior and during MYXV treatment, we prevented treatment-induced peripheral immunocyte recruitment and, surprisingly, largely ablated the tumor-resident macrophage population. Virotherapy of cyclophosphamide-treated animals resulted in sustained viral infection within the glioma as well as a substantial survival advantage. This study demonstrates that resistance to MYXV virotherapy in syngeneic glioma models involves a multifaceted cellular immune response that can be overcome with cyclophosphamide-mediated lymphoablation.

DOI: 10.1158/0008-5472.CAN-14-0876
PubMed: 25336188
PubMed Central: PMC4281961

Links to Exploration step

pubmed:25336188

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Cellular factors promoting resistance to effective treatment of glioma with oncolytic myxoma virus.</title>
<author>
<name sortKey="Zemp, Franz J" sort="Zemp, Franz J" uniqKey="Zemp F" first="Franz J" last="Zemp">Franz J. Zemp</name>
<affiliation>
<nlm:affiliation>Southern Alberta Cancer Research Institute, University of Calgary, Alberta, Canada. Clark H. Smith Brain Tumor Center, University of Calgary, Alberta, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Mckenzie, Brienne A" sort="Mckenzie, Brienne A" uniqKey="Mckenzie B" first="Brienne A" last="Mckenzie">Brienne A. Mckenzie</name>
<affiliation>
<nlm:affiliation>Southern Alberta Cancer Research Institute, University of Calgary, Alberta, Canada. Clark H. Smith Brain Tumor Center, University of Calgary, Alberta, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lun, Xueqing" sort="Lun, Xueqing" uniqKey="Lun X" first="Xueqing" last="Lun">Xueqing Lun</name>
<affiliation>
<nlm:affiliation>Southern Alberta Cancer Research Institute, University of Calgary, Alberta, Canada. Clark H. Smith Brain Tumor Center, University of Calgary, Alberta, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Reilly, Karlyne M" sort="Reilly, Karlyne M" uniqKey="Reilly K" first="Karlyne M" last="Reilly">Karlyne M. Reilly</name>
<affiliation>
<nlm:affiliation>Mouse Cancer Genetics Program, NCI, Frederick, Maryland.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Mcfadden, Grant" sort="Mcfadden, Grant" uniqKey="Mcfadden G" first="Grant" last="Mcfadden">Grant Mcfadden</name>
<affiliation>
<nlm:affiliation>Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, Florida.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Yong, V Wee" sort="Yong, V Wee" uniqKey="Yong V" first="V Wee" last="Yong">V Wee Yong</name>
<affiliation>
<nlm:affiliation>Hotchkiss Brain Institute, Departments of Clinical Neurosciences, University of Calgary, Alberta, Canada. Hotchkiss Brain Institute, Department of Oncology, University of Calgary, Alberta, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Forsyth, Peter A" sort="Forsyth, Peter A" uniqKey="Forsyth P" first="Peter A" last="Forsyth">Peter A. Forsyth</name>
<affiliation>
<nlm:affiliation>Southern Alberta Cancer Research Institute, University of Calgary, Alberta, Canada. Clark H. Smith Brain Tumor Center, University of Calgary, Alberta, Canada. Department of Neuro-Oncology, H. Lee Moffitt Cancer Center and Research Institute and University of Southern Florida, Tampa, Florida. Peter.Forsyth@moffitt.org.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:25336188</idno>
<idno type="pmid">25336188</idno>
<idno type="doi">10.1158/0008-5472.CAN-14-0876</idno>
<idno type="pmc">PMC4281961</idno>
<idno type="wicri:Area/Main/Corpus">000D68</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000D68</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Cellular factors promoting resistance to effective treatment of glioma with oncolytic myxoma virus.</title>
<author>
<name sortKey="Zemp, Franz J" sort="Zemp, Franz J" uniqKey="Zemp F" first="Franz J" last="Zemp">Franz J. Zemp</name>
<affiliation>
<nlm:affiliation>Southern Alberta Cancer Research Institute, University of Calgary, Alberta, Canada. Clark H. Smith Brain Tumor Center, University of Calgary, Alberta, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Mckenzie, Brienne A" sort="Mckenzie, Brienne A" uniqKey="Mckenzie B" first="Brienne A" last="Mckenzie">Brienne A. Mckenzie</name>
<affiliation>
<nlm:affiliation>Southern Alberta Cancer Research Institute, University of Calgary, Alberta, Canada. Clark H. Smith Brain Tumor Center, University of Calgary, Alberta, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lun, Xueqing" sort="Lun, Xueqing" uniqKey="Lun X" first="Xueqing" last="Lun">Xueqing Lun</name>
<affiliation>
<nlm:affiliation>Southern Alberta Cancer Research Institute, University of Calgary, Alberta, Canada. Clark H. Smith Brain Tumor Center, University of Calgary, Alberta, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Reilly, Karlyne M" sort="Reilly, Karlyne M" uniqKey="Reilly K" first="Karlyne M" last="Reilly">Karlyne M. Reilly</name>
<affiliation>
<nlm:affiliation>Mouse Cancer Genetics Program, NCI, Frederick, Maryland.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Mcfadden, Grant" sort="Mcfadden, Grant" uniqKey="Mcfadden G" first="Grant" last="Mcfadden">Grant Mcfadden</name>
<affiliation>
<nlm:affiliation>Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, Florida.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Yong, V Wee" sort="Yong, V Wee" uniqKey="Yong V" first="V Wee" last="Yong">V Wee Yong</name>
<affiliation>
<nlm:affiliation>Hotchkiss Brain Institute, Departments of Clinical Neurosciences, University of Calgary, Alberta, Canada. Hotchkiss Brain Institute, Department of Oncology, University of Calgary, Alberta, Canada.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Forsyth, Peter A" sort="Forsyth, Peter A" uniqKey="Forsyth P" first="Peter A" last="Forsyth">Peter A. Forsyth</name>
<affiliation>
<nlm:affiliation>Southern Alberta Cancer Research Institute, University of Calgary, Alberta, Canada. Clark H. Smith Brain Tumor Center, University of Calgary, Alberta, Canada. Department of Neuro-Oncology, H. Lee Moffitt Cancer Center and Research Institute and University of Southern Florida, Tampa, Florida. Peter.Forsyth@moffitt.org.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Cancer research</title>
<idno type="eISSN">1538-7445</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Brain Neoplasms (immunology)</term>
<term>Brain Neoplasms (therapy)</term>
<term>Brain Neoplasms (virology)</term>
<term>Cell Line, Tumor (MeSH)</term>
<term>Cyclophosphamide (administration & dosage)</term>
<term>Flow Cytometry (MeSH)</term>
<term>Glioma (immunology)</term>
<term>Glioma (therapy)</term>
<term>Glioma (virology)</term>
<term>Humans (MeSH)</term>
<term>Immunity, Cellular (immunology)</term>
<term>Killer Cells, Natural (immunology)</term>
<term>Mice (MeSH)</term>
<term>Myxoma virus (immunology)</term>
<term>Oncolytic Virotherapy (MeSH)</term>
<term>Oncolytic Viruses (immunology)</term>
<term>Sirolimus (administration & dosage)</term>
<term>Xenograft Model Antitumor Assays (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="administration & dosage" xml:lang="en">
<term>Cyclophosphamide</term>
<term>Sirolimus</term>
</keywords>
<keywords scheme="MESH" qualifier="immunology" xml:lang="en">
<term>Brain Neoplasms</term>
<term>Glioma</term>
<term>Immunity, Cellular</term>
<term>Killer Cells, Natural</term>
<term>Myxoma virus</term>
<term>Oncolytic Viruses</term>
</keywords>
<keywords scheme="MESH" qualifier="therapy" xml:lang="en">
<term>Brain Neoplasms</term>
<term>Glioma</term>
</keywords>
<keywords scheme="MESH" qualifier="virology" xml:lang="en">
<term>Brain Neoplasms</term>
<term>Glioma</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Cell Line, Tumor</term>
<term>Flow Cytometry</term>
<term>Humans</term>
<term>Mice</term>
<term>Oncolytic Virotherapy</term>
<term>Xenograft Model Antitumor Assays</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Oncolytic virus therapy is being evaluated in clinical trials for human glioma. While it is widely assumed that the immune response of the patient to the virus infection limits the utility of the therapy, investigations into the specific cell type(s) involved in this response have been performed using nonspecific pharmacologic inhibitors or allogeneic models with compromised immunity. To identify the immune cells that participate in clearing an oncolytic infection in glioma, we used flow cytometry and immunohistochemistry to immunophenotype an orthotopic glioma model in immunocompetent mice after Myxoma virus (MYXV) administration. These studies revealed a large resident microglia and macrophage population in untreated tumors, and robust monocyte, T-, and NK cell infiltration 3 days after MYXV infection. To determine the role on the clinical utility of MYXV therapy for glioma, we used a combination of knockout mouse strains and specific immunocyte ablation techniques. Collectively, our experiments identify an important role for tumor-resident myeloid cells and overlapping roles for recruited NK and T cells in the clearance and efficacy of oncolytic MYXV from gliomas. Using a cyclophosphamide regimen to achieve lymphoablation prior and during MYXV treatment, we prevented treatment-induced peripheral immunocyte recruitment and, surprisingly, largely ablated the tumor-resident macrophage population. Virotherapy of cyclophosphamide-treated animals resulted in sustained viral infection within the glioma as well as a substantial survival advantage. This study demonstrates that resistance to MYXV virotherapy in syngeneic glioma models involves a multifaceted cellular immune response that can be overcome with cyclophosphamide-mediated lymphoablation.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">25336188</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>02</Month>
<Day>10</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>03</Month>
<Day>11</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1538-7445</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>74</Volume>
<Issue>24</Issue>
<PubDate>
<Year>2014</Year>
<Month>Dec</Month>
<Day>15</Day>
</PubDate>
</JournalIssue>
<Title>Cancer research</Title>
<ISOAbbreviation>Cancer Res</ISOAbbreviation>
</Journal>
<ArticleTitle>Cellular factors promoting resistance to effective treatment of glioma with oncolytic myxoma virus.</ArticleTitle>
<Pagination>
<MedlinePgn>7260-73</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1158/0008-5472.CAN-14-0876</ELocationID>
<Abstract>
<AbstractText>Oncolytic virus therapy is being evaluated in clinical trials for human glioma. While it is widely assumed that the immune response of the patient to the virus infection limits the utility of the therapy, investigations into the specific cell type(s) involved in this response have been performed using nonspecific pharmacologic inhibitors or allogeneic models with compromised immunity. To identify the immune cells that participate in clearing an oncolytic infection in glioma, we used flow cytometry and immunohistochemistry to immunophenotype an orthotopic glioma model in immunocompetent mice after Myxoma virus (MYXV) administration. These studies revealed a large resident microglia and macrophage population in untreated tumors, and robust monocyte, T-, and NK cell infiltration 3 days after MYXV infection. To determine the role on the clinical utility of MYXV therapy for glioma, we used a combination of knockout mouse strains and specific immunocyte ablation techniques. Collectively, our experiments identify an important role for tumor-resident myeloid cells and overlapping roles for recruited NK and T cells in the clearance and efficacy of oncolytic MYXV from gliomas. Using a cyclophosphamide regimen to achieve lymphoablation prior and during MYXV treatment, we prevented treatment-induced peripheral immunocyte recruitment and, surprisingly, largely ablated the tumor-resident macrophage population. Virotherapy of cyclophosphamide-treated animals resulted in sustained viral infection within the glioma as well as a substantial survival advantage. This study demonstrates that resistance to MYXV virotherapy in syngeneic glioma models involves a multifaceted cellular immune response that can be overcome with cyclophosphamide-mediated lymphoablation.</AbstractText>
<CopyrightInformation>©2014 American Association for Cancer Research.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Zemp</LastName>
<ForeName>Franz J</ForeName>
<Initials>FJ</Initials>
<AffiliationInfo>
<Affiliation>Southern Alberta Cancer Research Institute, University of Calgary, Alberta, Canada. Clark H. Smith Brain Tumor Center, University of Calgary, Alberta, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>McKenzie</LastName>
<ForeName>Brienne A</ForeName>
<Initials>BA</Initials>
<AffiliationInfo>
<Affiliation>Southern Alberta Cancer Research Institute, University of Calgary, Alberta, Canada. Clark H. Smith Brain Tumor Center, University of Calgary, Alberta, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lun</LastName>
<ForeName>Xueqing</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>Southern Alberta Cancer Research Institute, University of Calgary, Alberta, Canada. Clark H. Smith Brain Tumor Center, University of Calgary, Alberta, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Reilly</LastName>
<ForeName>Karlyne M</ForeName>
<Initials>KM</Initials>
<AffiliationInfo>
<Affiliation>Mouse Cancer Genetics Program, NCI, Frederick, Maryland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>McFadden</LastName>
<ForeName>Grant</ForeName>
<Initials>G</Initials>
<AffiliationInfo>
<Affiliation>Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, Florida.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yong</LastName>
<ForeName>V Wee</ForeName>
<Initials>VW</Initials>
<AffiliationInfo>
<Affiliation>Hotchkiss Brain Institute, Departments of Clinical Neurosciences, University of Calgary, Alberta, Canada. Hotchkiss Brain Institute, Department of Oncology, University of Calgary, Alberta, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Forsyth</LastName>
<ForeName>Peter A</ForeName>
<Initials>PA</Initials>
<AffiliationInfo>
<Affiliation>Southern Alberta Cancer Research Institute, University of Calgary, Alberta, Canada. Clark H. Smith Brain Tumor Center, University of Calgary, Alberta, Canada. Department of Neuro-Oncology, H. Lee Moffitt Cancer Center and Research Institute and University of Southern Florida, Tampa, Florida. Peter.Forsyth@moffitt.org.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 AI100987</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>ZIA BC010541-11</GrantID>
<Acronym>ImNIH</Acronym>
<Agency>Intramural NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>ZIA BC010541</GrantID>
<Acronym>ImNIH</Acronym>
<Agency>Intramural NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>ZIA BC010541-08</GrantID>
<Acronym>ImNIH</Acronym>
<Agency>Intramural NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 CA138541</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>ZIA BC010541-07</GrantID>
<Acronym>ImNIH</Acronym>
<Agency>Intramural NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>ZIA BC010541-10</GrantID>
<Acronym>ImNIH</Acronym>
<Agency>Intramural NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 AI080607</GrantID>
<Acronym>AI</Acronym>
<Agency>NIAID NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D052060">Research Support, N.I.H., Intramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013487">Research Support, U.S. Gov't, P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>10</Month>
<Day>21</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Cancer Res</MedlineTA>
<NlmUniqueID>2984705R</NlmUniqueID>
<ISSNLinking>0008-5472</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>8N3DW7272P</RegistryNumber>
<NameOfSubstance UI="D003520">Cyclophosphamide</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>W36ZG6FT64</RegistryNumber>
<NameOfSubstance UI="D020123">Sirolimus</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001932" MajorTopicYN="N">Brain Neoplasms</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
<QualifierName UI="Q000628" MajorTopicYN="Y">therapy</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045744" MajorTopicYN="N">Cell Line, Tumor</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003520" MajorTopicYN="N">Cyclophosphamide</DescriptorName>
<QualifierName UI="Q000008" MajorTopicYN="N">administration & dosage</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005434" MajorTopicYN="N">Flow Cytometry</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005910" MajorTopicYN="N">Glioma</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
<QualifierName UI="Q000628" MajorTopicYN="Y">therapy</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007111" MajorTopicYN="N">Immunity, Cellular</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007694" MajorTopicYN="N">Killer Cells, Natural</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009233" MajorTopicYN="N">Myxoma virus</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="Y">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D050130" MajorTopicYN="Y">Oncolytic Virotherapy</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D050504" MajorTopicYN="N">Oncolytic Viruses</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020123" MajorTopicYN="N">Sirolimus</DescriptorName>
<QualifierName UI="Q000008" MajorTopicYN="N">administration & dosage</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D023041" MajorTopicYN="N">Xenograft Model Antitumor Assays</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>10</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>10</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>2</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25336188</ArticleId>
<ArticleId IdType="pii">0008-5472.CAN-14-0876</ArticleId>
<ArticleId IdType="doi">10.1158/0008-5472.CAN-14-0876</ArticleId>
<ArticleId IdType="pmc">PMC4281961</ArticleId>
<ArticleId IdType="mid">NIHMS636258</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nat Rev Immunol. 2013 Feb;13(2):88-100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23348415</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuro Oncol. 2006 Jul;8(3):261-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16775224</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Immunol. 2013;31:413-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23298206</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013;8(6):e66825</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23762498</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013;8(6):e65801</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23762429</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuro Oncol. 2013 Jul;15(7):904-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23585629</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuro Oncol. 2013 Sep;15(9):1127-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23787763</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuro Oncol. 2014 Mar;16(3):334-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24470549</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Immunol Res. 2014 Apr;2(4):295-300</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24764576</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Res. 2010 Jan 15;70(2):598-608</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20068158</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2000 Jun 6;97(12):6803-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10841575</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2000 Sep;26(1):109-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10973261</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Med. 2001 Mar 19;193(6):713-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11257138</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Natl Cancer Inst. 2001 Jun 20;93(12):903-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11416111</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Res. 2005 Nov 1;65(21):9982-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16267023</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2011 Jan 1;186(1):471-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21131425</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Aug 22;103(34):12873-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16908838</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Res. 2006 Dec 15;66(24):11840-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17178881</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Res. 2007 Sep 15;67(18):8818-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17875723</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011;6(4):e18688</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21494695</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Rev. 2011 Apr;91(2):461-553</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21527731</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2012 Apr;86(8):4566-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22318143</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cereb Blood Flow Metab. 2012 Apr;32(4):598-611</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22293986</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ther. 2012 Apr;20(4):759-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22233582</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2012;8(8):e1002838</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22916008</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2012 Jul;30(7):658-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22781695</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Med. 2012 Dec;18(12):1827-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23178246</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene Ther. 2002 Mar;9(6):398-406</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11960316</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2004 Apr 1;172(7):4410-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15034056</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Med. 1990 Oct 1;172(4):1025-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2145387</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Immunity. 1995 Mar;2(3):223-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7697543</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Med. 1995 Sep;1(9):938-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7585221</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Neuropathol. 1996 Sep;92(3):288-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8870831</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 Dec 22;95(26):15769-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9861045</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Gene Ther. 2005 Mar;12(3):284-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15650766</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2005 Mar 10;352(10):987-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15758009</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuro Oncol. 2005 Jul;7(3):213-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16053696</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Res. 2007 Oct 1;67(19):9398-406</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17909049</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ther. 2009 Jan;17(1):199-207</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18957964</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosurg. 2009 Mar;110(3):572-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19199469</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Res. 2009 Apr 15;69(8):3472-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19351838</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Cancer Res. 2009 Apr 15;15(8):2777-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19351762</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brain Res. 2009 Sep 15;1289:79-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19559679</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Protoc Microbiol. 2010 May;Chapter 14:Unit 14A.1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20440681</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cytokine Growth Factor Rev. 2010 Apr-Jun;21(2-3):103-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20483653</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ther. 2010 Nov;18(11):1927-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20808290</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2013 Mar 5;110(10):4009-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23412337</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000D68 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000D68 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:25336188
   |texte=   Cellular factors promoting resistance to effective treatment of glioma with oncolytic myxoma virus.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:25336188" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020