Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Regulation of endothelial cell proliferation and vascular assembly through distinct mTORC2 signaling pathways.

Identifieur interne : 000D19 ( Main/Corpus ); précédent : 000D18; suivant : 000D20

Regulation of endothelial cell proliferation and vascular assembly through distinct mTORC2 signaling pathways.

Auteurs : Shan Wang ; Katherine R. Amato ; Wenqiang Song ; Victoria Youngblood ; Keunwook Lee ; Mark Boothby ; Dana M. Brantley-Sieders ; Jin Chen

Source :

RBID : pubmed:25582201

English descriptors

Abstract

Mammalian target of rapamycin (mTOR) is a serine/threonine kinase that regulates a diverse array of cellular processes, including cell growth, survival, metabolism, and cytoskeleton dynamics. mTOR functions in two distinct complexes, mTORC1 and mTORC2, whose activities and substrate specificities are regulated by complex specific cofactors, including Raptor and Rictor, respectively. Little is known regarding the relative contribution of mTORC1 versus mTORC2 in vascular endothelial cells. Using mouse models of Raptor or Rictor gene targeting, we discovered that Rictor ablation inhibited vascular endothelial growth factor (VEGF)-induced endothelial cell proliferation and assembly in vitro and angiogenesis in vivo, whereas the loss of Raptor had only a modest effect on endothelial cells (ECs). Mechanistically, the loss of Rictor reduced the phosphorylation of AKT, protein kinase Cα (PKCα), and NDRG1 without affecting the mTORC1 pathway. In contrast, the loss of Raptor increased the phosphorylation of AKT despite inhibiting the phosphorylation of S6K1, a direct target of mTORC1. Reconstitution of Rictor-null cells with myristoylated AKT (Myr-AKT) rescued vascular assembly in Rictor-deficient endothelial cells, whereas PKCα rescued proliferation defects. Furthermore, tumor neovascularization in vivo was significantly decreased upon EC-specific Rictor deletion in mice. These data indicate that mTORC2 is a critical signaling node required for VEGF-mediated angiogenesis through the regulation of AKT and PKCα in vascular endothelial cells.

DOI: 10.1128/MCB.00306-14
PubMed: 25582201
PubMed Central: PMC4355541

Links to Exploration step

pubmed:25582201

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Regulation of endothelial cell proliferation and vascular assembly through distinct mTORC2 signaling pathways.</title>
<author>
<name sortKey="Wang, Shan" sort="Wang, Shan" uniqKey="Wang S" first="Shan" last="Wang">Shan Wang</name>
<affiliation>
<nlm:affiliation>Division of Rheumatology and Immunology, Department of Medicine, Vanderbilt University, Nashville, Tennessee, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Amato, Katherine R" sort="Amato, Katherine R" uniqKey="Amato K" first="Katherine R" last="Amato">Katherine R. Amato</name>
<affiliation>
<nlm:affiliation>Department of Cancer Biology, Vanderbilt University, Nashville, Tennessee, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Song, Wenqiang" sort="Song, Wenqiang" uniqKey="Song W" first="Wenqiang" last="Song">Wenqiang Song</name>
<affiliation>
<nlm:affiliation>Division of Rheumatology and Immunology, Department of Medicine, Vanderbilt University, Nashville, Tennessee, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Youngblood, Victoria" sort="Youngblood, Victoria" uniqKey="Youngblood V" first="Victoria" last="Youngblood">Victoria Youngblood</name>
<affiliation>
<nlm:affiliation>Department of Cancer Biology, Vanderbilt University, Nashville, Tennessee, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lee, Keunwook" sort="Lee, Keunwook" uniqKey="Lee K" first="Keunwook" last="Lee">Keunwook Lee</name>
<affiliation>
<nlm:affiliation>Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, Tennessee, USA Hallym University, Chuncheon, Gangwon-do, South Korea.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Boothby, Mark" sort="Boothby, Mark" uniqKey="Boothby M" first="Mark" last="Boothby">Mark Boothby</name>
<affiliation>
<nlm:affiliation>Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, Tennessee, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Brantley Sieders, Dana M" sort="Brantley Sieders, Dana M" uniqKey="Brantley Sieders D" first="Dana M" last="Brantley-Sieders">Dana M. Brantley-Sieders</name>
<affiliation>
<nlm:affiliation>Division of Rheumatology and Immunology, Department of Medicine, Vanderbilt University, Nashville, Tennessee, USA Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chen, Jin" sort="Chen, Jin" uniqKey="Chen J" first="Jin" last="Chen">Jin Chen</name>
<affiliation>
<nlm:affiliation>Division of Rheumatology and Immunology, Department of Medicine, Vanderbilt University, Nashville, Tennessee, USA Department of Cancer Biology, Vanderbilt University, Nashville, Tennessee, USA Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, USA Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee, USA Veterans Affairs Medical Center, Tennessee Valley Healthcare System, Nashville, Tennessee, USA jin.chen@vanderbilt.edu.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:25582201</idno>
<idno type="pmid">25582201</idno>
<idno type="doi">10.1128/MCB.00306-14</idno>
<idno type="pmc">PMC4355541</idno>
<idno type="wicri:Area/Main/Corpus">000D19</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000D19</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Regulation of endothelial cell proliferation and vascular assembly through distinct mTORC2 signaling pathways.</title>
<author>
<name sortKey="Wang, Shan" sort="Wang, Shan" uniqKey="Wang S" first="Shan" last="Wang">Shan Wang</name>
<affiliation>
<nlm:affiliation>Division of Rheumatology and Immunology, Department of Medicine, Vanderbilt University, Nashville, Tennessee, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Amato, Katherine R" sort="Amato, Katherine R" uniqKey="Amato K" first="Katherine R" last="Amato">Katherine R. Amato</name>
<affiliation>
<nlm:affiliation>Department of Cancer Biology, Vanderbilt University, Nashville, Tennessee, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Song, Wenqiang" sort="Song, Wenqiang" uniqKey="Song W" first="Wenqiang" last="Song">Wenqiang Song</name>
<affiliation>
<nlm:affiliation>Division of Rheumatology and Immunology, Department of Medicine, Vanderbilt University, Nashville, Tennessee, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Youngblood, Victoria" sort="Youngblood, Victoria" uniqKey="Youngblood V" first="Victoria" last="Youngblood">Victoria Youngblood</name>
<affiliation>
<nlm:affiliation>Department of Cancer Biology, Vanderbilt University, Nashville, Tennessee, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Lee, Keunwook" sort="Lee, Keunwook" uniqKey="Lee K" first="Keunwook" last="Lee">Keunwook Lee</name>
<affiliation>
<nlm:affiliation>Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, Tennessee, USA Hallym University, Chuncheon, Gangwon-do, South Korea.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Boothby, Mark" sort="Boothby, Mark" uniqKey="Boothby M" first="Mark" last="Boothby">Mark Boothby</name>
<affiliation>
<nlm:affiliation>Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, Tennessee, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Brantley Sieders, Dana M" sort="Brantley Sieders, Dana M" uniqKey="Brantley Sieders D" first="Dana M" last="Brantley-Sieders">Dana M. Brantley-Sieders</name>
<affiliation>
<nlm:affiliation>Division of Rheumatology and Immunology, Department of Medicine, Vanderbilt University, Nashville, Tennessee, USA Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee, USA.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chen, Jin" sort="Chen, Jin" uniqKey="Chen J" first="Jin" last="Chen">Jin Chen</name>
<affiliation>
<nlm:affiliation>Division of Rheumatology and Immunology, Department of Medicine, Vanderbilt University, Nashville, Tennessee, USA Department of Cancer Biology, Vanderbilt University, Nashville, Tennessee, USA Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, USA Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee, USA Veterans Affairs Medical Center, Tennessee Valley Healthcare System, Nashville, Tennessee, USA jin.chen@vanderbilt.edu.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Molecular and cellular biology</title>
<idno type="eISSN">1098-5549</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adaptor Proteins, Signal Transducing (genetics)</term>
<term>Adaptor Proteins, Signal Transducing (metabolism)</term>
<term>Animals (MeSH)</term>
<term>Carrier Proteins (genetics)</term>
<term>Carrier Proteins (metabolism)</term>
<term>Cell Proliferation (MeSH)</term>
<term>Cells, Cultured (MeSH)</term>
<term>Endothelial Cells (cytology)</term>
<term>Endothelial Cells (metabolism)</term>
<term>Gene Deletion (MeSH)</term>
<term>Human Umbilical Vein Endothelial Cells (MeSH)</term>
<term>Humans (MeSH)</term>
<term>Mechanistic Target of Rapamycin Complex 2 (MeSH)</term>
<term>Mice (MeSH)</term>
<term>Multiprotein Complexes (metabolism)</term>
<term>Neovascularization, Physiologic (MeSH)</term>
<term>Phosphorylation (MeSH)</term>
<term>Protein Kinase C-alpha (metabolism)</term>
<term>Proto-Oncogene Proteins c-akt (metabolism)</term>
<term>Rapamycin-Insensitive Companion of mTOR Protein (MeSH)</term>
<term>Regulatory-Associated Protein of mTOR (MeSH)</term>
<term>Signal Transduction (MeSH)</term>
<term>TOR Serine-Threonine Kinases (metabolism)</term>
<term>Vascular Endothelial Growth Factor A (metabolism)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Adaptor Proteins, Signal Transducing</term>
<term>Carrier Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Adaptor Proteins, Signal Transducing</term>
<term>Carrier Proteins</term>
<term>Multiprotein Complexes</term>
<term>Protein Kinase C-alpha</term>
<term>Proto-Oncogene Proteins c-akt</term>
<term>TOR Serine-Threonine Kinases</term>
<term>Vascular Endothelial Growth Factor A</term>
</keywords>
<keywords scheme="MESH" qualifier="cytology" xml:lang="en">
<term>Endothelial Cells</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Endothelial Cells</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Cell Proliferation</term>
<term>Cells, Cultured</term>
<term>Gene Deletion</term>
<term>Human Umbilical Vein Endothelial Cells</term>
<term>Humans</term>
<term>Mechanistic Target of Rapamycin Complex 2</term>
<term>Mice</term>
<term>Neovascularization, Physiologic</term>
<term>Phosphorylation</term>
<term>Rapamycin-Insensitive Companion of mTOR Protein</term>
<term>Regulatory-Associated Protein of mTOR</term>
<term>Signal Transduction</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Mammalian target of rapamycin (mTOR) is a serine/threonine kinase that regulates a diverse array of cellular processes, including cell growth, survival, metabolism, and cytoskeleton dynamics. mTOR functions in two distinct complexes, mTORC1 and mTORC2, whose activities and substrate specificities are regulated by complex specific cofactors, including Raptor and Rictor, respectively. Little is known regarding the relative contribution of mTORC1 versus mTORC2 in vascular endothelial cells. Using mouse models of Raptor or Rictor gene targeting, we discovered that Rictor ablation inhibited vascular endothelial growth factor (VEGF)-induced endothelial cell proliferation and assembly in vitro and angiogenesis in vivo, whereas the loss of Raptor had only a modest effect on endothelial cells (ECs). Mechanistically, the loss of Rictor reduced the phosphorylation of AKT, protein kinase Cα (PKCα), and NDRG1 without affecting the mTORC1 pathway. In contrast, the loss of Raptor increased the phosphorylation of AKT despite inhibiting the phosphorylation of S6K1, a direct target of mTORC1. Reconstitution of Rictor-null cells with myristoylated AKT (Myr-AKT) rescued vascular assembly in Rictor-deficient endothelial cells, whereas PKCα rescued proliferation defects. Furthermore, tumor neovascularization in vivo was significantly decreased upon EC-specific Rictor deletion in mice. These data indicate that mTORC2 is a critical signaling node required for VEGF-mediated angiogenesis through the regulation of AKT and PKCα in vascular endothelial cells. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">25582201</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>05</Month>
<Day>26</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1098-5549</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>35</Volume>
<Issue>7</Issue>
<PubDate>
<Year>2015</Year>
<Month>Apr</Month>
</PubDate>
</JournalIssue>
<Title>Molecular and cellular biology</Title>
<ISOAbbreviation>Mol Cell Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>Regulation of endothelial cell proliferation and vascular assembly through distinct mTORC2 signaling pathways.</ArticleTitle>
<Pagination>
<MedlinePgn>1299-313</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1128/MCB.00306-14</ELocationID>
<Abstract>
<AbstractText>Mammalian target of rapamycin (mTOR) is a serine/threonine kinase that regulates a diverse array of cellular processes, including cell growth, survival, metabolism, and cytoskeleton dynamics. mTOR functions in two distinct complexes, mTORC1 and mTORC2, whose activities and substrate specificities are regulated by complex specific cofactors, including Raptor and Rictor, respectively. Little is known regarding the relative contribution of mTORC1 versus mTORC2 in vascular endothelial cells. Using mouse models of Raptor or Rictor gene targeting, we discovered that Rictor ablation inhibited vascular endothelial growth factor (VEGF)-induced endothelial cell proliferation and assembly in vitro and angiogenesis in vivo, whereas the loss of Raptor had only a modest effect on endothelial cells (ECs). Mechanistically, the loss of Rictor reduced the phosphorylation of AKT, protein kinase Cα (PKCα), and NDRG1 without affecting the mTORC1 pathway. In contrast, the loss of Raptor increased the phosphorylation of AKT despite inhibiting the phosphorylation of S6K1, a direct target of mTORC1. Reconstitution of Rictor-null cells with myristoylated AKT (Myr-AKT) rescued vascular assembly in Rictor-deficient endothelial cells, whereas PKCα rescued proliferation defects. Furthermore, tumor neovascularization in vivo was significantly decreased upon EC-specific Rictor deletion in mice. These data indicate that mTORC2 is a critical signaling node required for VEGF-mediated angiogenesis through the regulation of AKT and PKCα in vascular endothelial cells. </AbstractText>
<CopyrightInformation>Copyright © 2015, American Society for Microbiology. All Rights Reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Shan</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Division of Rheumatology and Immunology, Department of Medicine, Vanderbilt University, Nashville, Tennessee, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Amato</LastName>
<ForeName>Katherine R</ForeName>
<Initials>KR</Initials>
<AffiliationInfo>
<Affiliation>Department of Cancer Biology, Vanderbilt University, Nashville, Tennessee, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Song</LastName>
<ForeName>Wenqiang</ForeName>
<Initials>W</Initials>
<AffiliationInfo>
<Affiliation>Division of Rheumatology and Immunology, Department of Medicine, Vanderbilt University, Nashville, Tennessee, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Youngblood</LastName>
<ForeName>Victoria</ForeName>
<Initials>V</Initials>
<AffiliationInfo>
<Affiliation>Department of Cancer Biology, Vanderbilt University, Nashville, Tennessee, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lee</LastName>
<ForeName>Keunwook</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, Tennessee, USA Hallym University, Chuncheon, Gangwon-do, South Korea.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Boothby</LastName>
<ForeName>Mark</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, Tennessee, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Brantley-Sieders</LastName>
<ForeName>Dana M</ForeName>
<Initials>DM</Initials>
<AffiliationInfo>
<Affiliation>Division of Rheumatology and Immunology, Department of Medicine, Vanderbilt University, Nashville, Tennessee, USA Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>Jin</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Division of Rheumatology and Immunology, Department of Medicine, Vanderbilt University, Nashville, Tennessee, USA Department of Cancer Biology, Vanderbilt University, Nashville, Tennessee, USA Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, USA Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, Tennessee, USA Veterans Affairs Medical Center, Tennessee Valley Healthcare System, Nashville, Tennessee, USA jin.chen@vanderbilt.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>CA177681</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 CA095004</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>I01 BX000134</GrantID>
<Acronym>BX</Acronym>
<Agency>BLRD VA</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>P30 CA068485</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 CA177681</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>T32 CA009592</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 CA148934</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 CA95004</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 HL106812</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>CA148934</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>01</Month>
<Day>12</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Mol Cell Biol</MedlineTA>
<NlmUniqueID>8109087</NlmUniqueID>
<ISSNLinking>0270-7306</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D048868">Adaptor Proteins, Signal Transducing</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D002352">Carrier Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D046912">Multiprotein Complexes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000076226">Rapamycin-Insensitive Companion of mTOR Protein</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000076223">Regulatory-Associated Protein of mTOR</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C540162">Rptor protein, mouse</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D042461">Vascular Endothelial Growth Factor A</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C525637">rictor protein, mouse</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.1</RegistryNumber>
<NameOfSubstance UI="D058570">TOR Serine-Threonine Kinases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="D000076225">Mechanistic Target of Rapamycin Complex 2</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="D051057">Proto-Oncogene Proteins c-akt</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.13</RegistryNumber>
<NameOfSubstance UI="D051571">Protein Kinase C-alpha</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D048868" MajorTopicYN="N">Adaptor Proteins, Signal Transducing</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002352" MajorTopicYN="N">Carrier Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D049109" MajorTopicYN="Y">Cell Proliferation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002478" MajorTopicYN="N">Cells, Cultured</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D042783" MajorTopicYN="N">Endothelial Cells</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="Y">cytology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017353" MajorTopicYN="N">Gene Deletion</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D061307" MajorTopicYN="N">Human Umbilical Vein Endothelial Cells</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000076225" MajorTopicYN="N">Mechanistic Target of Rapamycin Complex 2</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051379" MajorTopicYN="N">Mice</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D046912" MajorTopicYN="N">Multiprotein Complexes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018919" MajorTopicYN="Y">Neovascularization, Physiologic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010766" MajorTopicYN="N">Phosphorylation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051571" MajorTopicYN="N">Protein Kinase C-alpha</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D051057" MajorTopicYN="N">Proto-Oncogene Proteins c-akt</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000076226" MajorTopicYN="N">Rapamycin-Insensitive Companion of mTOR Protein</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000076223" MajorTopicYN="N">Regulatory-Associated Protein of mTOR</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="Y">Signal Transduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058570" MajorTopicYN="N">TOR Serine-Threonine Kinases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D042461" MajorTopicYN="N">Vascular Endothelial Growth Factor A</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>1</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>1</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>5</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25582201</ArticleId>
<ArticleId IdType="pii">MCB.00306-14</ArticleId>
<ArticleId IdType="doi">10.1128/MCB.00306-14</ArticleId>
<ArticleId IdType="pmc">PMC4355541</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Cardiovasc Res. 2008 Jun 1;78(3):563-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18250144</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Mol Med. 2008 Apr;14(4):152-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18329957</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 2008;443:137-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18772015</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cancer Res. 2009 May;7(5):615-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19435813</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arterioscler Thromb Vasc Biol. 2009 Aug;29(8):1172-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19443844</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Cycle. 2009 Dec;8(23):3878-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19901535</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oncogene. 2010 Jul 1;29(26):3733-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20418915</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cancer. 2010;9:157</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20569463</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Cell Biol. 2010 Oct;22(5):617-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20817428</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2011 Jan;12(1):21-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21157483</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Res. 2011 Feb 1;71(3):976-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21148069</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Diabetes. 2011 Mar;60(3):827-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21266327</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Res. 2011 Mar 1;71(5):1573-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21363918</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cancer Ther. 2011 Mar;10(3):395-403</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21216931</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Invest. 2011 Apr;121(4):1231-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21490404</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2011 Aug 5;146(3):408-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21816276</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2011 Sep 16;146(6):873-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21925313</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Development. 2011 Nov;138(21):4569-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21965610</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cold Spring Harb Perspect Biol. 2012 Feb;4(2). pii: a011593. doi: 10.1101/cshperspect.a011593</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22129599</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2012 Aug 24;287(35):29579-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22773877</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hum Mol Genet. 2013 Jan 1;22(1):140-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23049074</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2013 Apr 15;201(2):293-308</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23569215</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Signal. 2013;6(271):ra25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23592840</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oncogene. 2013 May 16;32(20):2521-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22777355</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2014 Sep 2;111(35):12865-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25136137</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cardiovasc Res. 2001 Feb 16;49(3):568-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11166270</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Med. 2002 Feb;8(2):128-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11821896</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Res. 2003 Nov 15;63(22):7777-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14633703</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2003 Dec;23(24):9389-404</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14645548</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2004 Apr 15;117(Pt 10):2037-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15054110</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Blood. 2004 Sep 15;104(6):1769-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15187022</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1996 Sep 6;271(36):21920-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8702995</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2004 Nov;6(11):1122-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15467718</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioorg Med Chem Lett. 2005 Feb 1;15(3):761-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15664853</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Feb 18;307(5712):1098-101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15718470</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Invest. 2005 Aug;115(8):2119-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16075056</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Circ Res. 2005 Sep 2;97(5):482-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16081872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FASEB J. 2005 Nov;19(13):1884-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16166198</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2006 Jul;26(13):4830-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16782872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2006 Apr 21;22(2):159-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16603397</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Nov 18;280(46):38879-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16186112</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Cell. 2006 Aug;10(2):159-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16904613</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Cell. 2006 Oct;11(4):583-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16962829</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Cell. 2006 Dec;11(6):859-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17141160</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Circ Res. 2007 Jan 5;100(1):79-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17110594</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Invest. 2008 Jan;118(1):64-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18079969</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Cancer Drug Targets. 2008 Feb;8(1):19-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18288940</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 2008 Mar;33(3):113-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18291659</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Res. 2008 Mar 15;68(6):1618-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18339839</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Jun 6;283(23):16017-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18387945</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000D19 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000D19 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:25582201
   |texte=   Regulation of endothelial cell proliferation and vascular assembly through distinct mTORC2 signaling pathways.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:25582201" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020