Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Regulation of ribosomal DNA amplification by the TOR pathway.

Identifieur interne : 000C20 ( Main/Corpus ); précédent : 000C19; suivant : 000C21

Regulation of ribosomal DNA amplification by the TOR pathway.

Auteurs : Carmen V. Jack ; Cristina Cruz ; Ryan M. Hull ; Markus A. Keller ; Markus Ralser ; Jonathan Houseley

Source :

RBID : pubmed:26195783

English descriptors

Abstract

Repeated regions are widespread in eukaryotic genomes, and key functional elements such as the ribosomal DNA tend to be formed of high copy repeated sequences organized in tandem arrays. In general, high copy repeats are remarkably stable, but a number of organisms display rapid ribosomal DNA amplification at specific times or under specific conditions. Here we demonstrate that target of rapamycin (TOR) signaling stimulates ribosomal DNA amplification in budding yeast, linking external nutrient availability to ribosomal DNA copy number. We show that ribosomal DNA amplification is regulated by three histone deacetylases: Sir2, Hst3, and Hst4. These enzymes control homologous recombination-dependent and nonhomologous recombination-dependent amplification pathways that act in concert to mediate rapid, directional ribosomal DNA copy number change. Amplification is completely repressed by rapamycin, an inhibitor of the nutrient-responsive TOR pathway; this effect is separable from growth rate and is mediated directly through Sir2, Hst3, and Hst4. Caloric restriction is known to up-regulate expression of nicotinamidase Pnc1, an enzyme that enhances Sir2, Hst3, and Hst4 activity. In contrast, normal glucose concentrations stretch the ribosome synthesis capacity of cells with low ribosomal DNA copy number, and we find that these cells show a previously unrecognized transcriptional response to caloric excess by reducing PNC1 expression. PNC1 down-regulation forms a key element in the control of ribosomal DNA amplification as overexpression of PNC1 substantially reduces ribosomal DNA amplification rate. Our results reveal how a signaling pathway can orchestrate specific genome changes and demonstrate that the copy number of repetitive DNA can be altered to suit environmental conditions.

DOI: 10.1073/pnas.1505015112
PubMed: 26195783
PubMed Central: PMC4534215

Links to Exploration step

pubmed:26195783

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Regulation of ribosomal DNA amplification by the TOR pathway.</title>
<author>
<name sortKey="Jack, Carmen V" sort="Jack, Carmen V" uniqKey="Jack C" first="Carmen V" last="Jack">Carmen V. Jack</name>
<affiliation>
<nlm:affiliation>Epigenetics Programme, The Babraham Institute, Cambridge CB22 3AT, United Kingdom;</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Cruz, Cristina" sort="Cruz, Cristina" uniqKey="Cruz C" first="Cristina" last="Cruz">Cristina Cruz</name>
<affiliation>
<nlm:affiliation>Epigenetics Programme, The Babraham Institute, Cambridge CB22 3AT, United Kingdom;</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hull, Ryan M" sort="Hull, Ryan M" uniqKey="Hull R" first="Ryan M" last="Hull">Ryan M. Hull</name>
<affiliation>
<nlm:affiliation>Epigenetics Programme, The Babraham Institute, Cambridge CB22 3AT, United Kingdom;</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Keller, Markus A" sort="Keller, Markus A" uniqKey="Keller M" first="Markus A" last="Keller">Markus A. Keller</name>
<affiliation>
<nlm:affiliation>Cambridge Systems Biology Centre and Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom;</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ralser, Markus" sort="Ralser, Markus" uniqKey="Ralser M" first="Markus" last="Ralser">Markus Ralser</name>
<affiliation>
<nlm:affiliation>Cambridge Systems Biology Centre and Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom; Division of Physiology and Metabolism, Medical Research Council National Institute for Medical Research, London NW7 1AA, United Kingdom.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Houseley, Jonathan" sort="Houseley, Jonathan" uniqKey="Houseley J" first="Jonathan" last="Houseley">Jonathan Houseley</name>
<affiliation>
<nlm:affiliation>Epigenetics Programme, The Babraham Institute, Cambridge CB22 3AT, United Kingdom; jon.houseley@babraham.ac.uk.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:26195783</idno>
<idno type="pmid">26195783</idno>
<idno type="doi">10.1073/pnas.1505015112</idno>
<idno type="pmc">PMC4534215</idno>
<idno type="wicri:Area/Main/Corpus">000C20</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000C20</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Regulation of ribosomal DNA amplification by the TOR pathway.</title>
<author>
<name sortKey="Jack, Carmen V" sort="Jack, Carmen V" uniqKey="Jack C" first="Carmen V" last="Jack">Carmen V. Jack</name>
<affiliation>
<nlm:affiliation>Epigenetics Programme, The Babraham Institute, Cambridge CB22 3AT, United Kingdom;</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Cruz, Cristina" sort="Cruz, Cristina" uniqKey="Cruz C" first="Cristina" last="Cruz">Cristina Cruz</name>
<affiliation>
<nlm:affiliation>Epigenetics Programme, The Babraham Institute, Cambridge CB22 3AT, United Kingdom;</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Hull, Ryan M" sort="Hull, Ryan M" uniqKey="Hull R" first="Ryan M" last="Hull">Ryan M. Hull</name>
<affiliation>
<nlm:affiliation>Epigenetics Programme, The Babraham Institute, Cambridge CB22 3AT, United Kingdom;</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Keller, Markus A" sort="Keller, Markus A" uniqKey="Keller M" first="Markus A" last="Keller">Markus A. Keller</name>
<affiliation>
<nlm:affiliation>Cambridge Systems Biology Centre and Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom;</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ralser, Markus" sort="Ralser, Markus" uniqKey="Ralser M" first="Markus" last="Ralser">Markus Ralser</name>
<affiliation>
<nlm:affiliation>Cambridge Systems Biology Centre and Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom; Division of Physiology and Metabolism, Medical Research Council National Institute for Medical Research, London NW7 1AA, United Kingdom.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Houseley, Jonathan" sort="Houseley, Jonathan" uniqKey="Houseley J" first="Jonathan" last="Houseley">Jonathan Houseley</name>
<affiliation>
<nlm:affiliation>Epigenetics Programme, The Babraham Institute, Cambridge CB22 3AT, United Kingdom; jon.houseley@babraham.ac.uk.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Proceedings of the National Academy of Sciences of the United States of America</title>
<idno type="eISSN">1091-6490</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Acetylation (drug effects)</term>
<term>DNA, Ribosomal (genetics)</term>
<term>Environment (MeSH)</term>
<term>Gene Amplification (drug effects)</term>
<term>Histone Deacetylases (metabolism)</term>
<term>Histones (metabolism)</term>
<term>Homologous Recombination (drug effects)</term>
<term>Homologous Recombination (genetics)</term>
<term>Lysine (metabolism)</term>
<term>Models, Biological (MeSH)</term>
<term>NAD (metabolism)</term>
<term>Protein-Serine-Threonine Kinases (metabolism)</term>
<term>Saccharomyces cerevisiae (drug effects)</term>
<term>Saccharomyces cerevisiae (enzymology)</term>
<term>Saccharomyces cerevisiae (genetics)</term>
<term>Saccharomyces cerevisiae (growth & development)</term>
<term>Saccharomyces cerevisiae Proteins (metabolism)</term>
<term>Signal Transduction (drug effects)</term>
<term>Sirolimus (pharmacology)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>DNA, Ribosomal</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Acetylation</term>
<term>Gene Amplification</term>
<term>Homologous Recombination</term>
<term>Saccharomyces cerevisiae</term>
<term>Signal Transduction</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Homologous Recombination</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Histone Deacetylases</term>
<term>Histones</term>
<term>Lysine</term>
<term>NAD</term>
<term>Protein-Serine-Threonine Kinases</term>
<term>Saccharomyces cerevisiae Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Sirolimus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Environment</term>
<term>Models, Biological</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Repeated regions are widespread in eukaryotic genomes, and key functional elements such as the ribosomal DNA tend to be formed of high copy repeated sequences organized in tandem arrays. In general, high copy repeats are remarkably stable, but a number of organisms display rapid ribosomal DNA amplification at specific times or under specific conditions. Here we demonstrate that target of rapamycin (TOR) signaling stimulates ribosomal DNA amplification in budding yeast, linking external nutrient availability to ribosomal DNA copy number. We show that ribosomal DNA amplification is regulated by three histone deacetylases: Sir2, Hst3, and Hst4. These enzymes control homologous recombination-dependent and nonhomologous recombination-dependent amplification pathways that act in concert to mediate rapid, directional ribosomal DNA copy number change. Amplification is completely repressed by rapamycin, an inhibitor of the nutrient-responsive TOR pathway; this effect is separable from growth rate and is mediated directly through Sir2, Hst3, and Hst4. Caloric restriction is known to up-regulate expression of nicotinamidase Pnc1, an enzyme that enhances Sir2, Hst3, and Hst4 activity. In contrast, normal glucose concentrations stretch the ribosome synthesis capacity of cells with low ribosomal DNA copy number, and we find that these cells show a previously unrecognized transcriptional response to caloric excess by reducing PNC1 expression. PNC1 down-regulation forms a key element in the control of ribosomal DNA amplification as overexpression of PNC1 substantially reduces ribosomal DNA amplification rate. Our results reveal how a signaling pathway can orchestrate specific genome changes and demonstrate that the copy number of repetitive DNA can be altered to suit environmental conditions. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">26195783</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>11</Month>
<Day>17</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1091-6490</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>112</Volume>
<Issue>31</Issue>
<PubDate>
<Year>2015</Year>
<Month>Aug</Month>
<Day>04</Day>
</PubDate>
</JournalIssue>
<Title>Proceedings of the National Academy of Sciences of the United States of America</Title>
<ISOAbbreviation>Proc Natl Acad Sci U S A</ISOAbbreviation>
</Journal>
<ArticleTitle>Regulation of ribosomal DNA amplification by the TOR pathway.</ArticleTitle>
<Pagination>
<MedlinePgn>9674-9</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1073/pnas.1505015112</ELocationID>
<Abstract>
<AbstractText>Repeated regions are widespread in eukaryotic genomes, and key functional elements such as the ribosomal DNA tend to be formed of high copy repeated sequences organized in tandem arrays. In general, high copy repeats are remarkably stable, but a number of organisms display rapid ribosomal DNA amplification at specific times or under specific conditions. Here we demonstrate that target of rapamycin (TOR) signaling stimulates ribosomal DNA amplification in budding yeast, linking external nutrient availability to ribosomal DNA copy number. We show that ribosomal DNA amplification is regulated by three histone deacetylases: Sir2, Hst3, and Hst4. These enzymes control homologous recombination-dependent and nonhomologous recombination-dependent amplification pathways that act in concert to mediate rapid, directional ribosomal DNA copy number change. Amplification is completely repressed by rapamycin, an inhibitor of the nutrient-responsive TOR pathway; this effect is separable from growth rate and is mediated directly through Sir2, Hst3, and Hst4. Caloric restriction is known to up-regulate expression of nicotinamidase Pnc1, an enzyme that enhances Sir2, Hst3, and Hst4 activity. In contrast, normal glucose concentrations stretch the ribosome synthesis capacity of cells with low ribosomal DNA copy number, and we find that these cells show a previously unrecognized transcriptional response to caloric excess by reducing PNC1 expression. PNC1 down-regulation forms a key element in the control of ribosomal DNA amplification as overexpression of PNC1 substantially reduces ribosomal DNA amplification rate. Our results reveal how a signaling pathway can orchestrate specific genome changes and demonstrate that the copy number of repetitive DNA can be altered to suit environmental conditions. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Jack</LastName>
<ForeName>Carmen V</ForeName>
<Initials>CV</Initials>
<AffiliationInfo>
<Affiliation>Epigenetics Programme, The Babraham Institute, Cambridge CB22 3AT, United Kingdom;</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Cruz</LastName>
<ForeName>Cristina</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Epigenetics Programme, The Babraham Institute, Cambridge CB22 3AT, United Kingdom;</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hull</LastName>
<ForeName>Ryan M</ForeName>
<Initials>RM</Initials>
<AffiliationInfo>
<Affiliation>Epigenetics Programme, The Babraham Institute, Cambridge CB22 3AT, United Kingdom;</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Keller</LastName>
<ForeName>Markus A</ForeName>
<Initials>MA</Initials>
<AffiliationInfo>
<Affiliation>Cambridge Systems Biology Centre and Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom;</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ralser</LastName>
<ForeName>Markus</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Cambridge Systems Biology Centre and Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom; Division of Physiology and Metabolism, Medical Research Council National Institute for Medical Research, London NW7 1AA, United Kingdom.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Houseley</LastName>
<ForeName>Jonathan</ForeName>
<Initials>J</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0001-8509-1500</Identifier>
<AffiliationInfo>
<Affiliation>Epigenetics Programme, The Babraham Institute, Cambridge CB22 3AT, United Kingdom; jon.houseley@babraham.ac.uk.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>BBS/E/B/0000H247</GrantID>
<Agency>Biotechnology and Biological Sciences Research Council</Agency>
<Country>United Kingdom</Country>
</Grant>
<Grant>
<GrantID>088335</GrantID>
<Agency>Wellcome Trust</Agency>
<Country>United Kingdom</Country>
</Grant>
<Grant>
<GrantID>093735</GrantID>
<Agency>Wellcome Trust</Agency>
<Country>United Kingdom</Country>
</Grant>
<Grant>
<Agency>Medical Research Council</Agency>
<Country>United Kingdom</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>07</Month>
<Day>20</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Proc Natl Acad Sci U S A</MedlineTA>
<NlmUniqueID>7505876</NlmUniqueID>
<ISSNLinking>0027-8424</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004275">DNA, Ribosomal</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D006657">Histones</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029701">Saccharomyces cerevisiae Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0U46U6E8UK</RegistryNumber>
<NameOfSubstance UI="D009243">NAD</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="D017346">Protein-Serine-Threonine Kinases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="C500749">target of rapamycin protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.5.1.98</RegistryNumber>
<NameOfSubstance UI="D006655">Histone Deacetylases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>K3Z4F929H6</RegistryNumber>
<NameOfSubstance UI="D008239">Lysine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>W36ZG6FT64</RegistryNumber>
<NameOfSubstance UI="D020123">Sirolimus</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000107" MajorTopicYN="N">Acetylation</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004275" MajorTopicYN="N">DNA, Ribosomal</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004777" MajorTopicYN="N">Environment</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005784" MajorTopicYN="Y">Gene Amplification</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006655" MajorTopicYN="N">Histone Deacetylases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006657" MajorTopicYN="N">Histones</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059765" MajorTopicYN="N">Homologous Recombination</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008239" MajorTopicYN="N">Lysine</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008954" MajorTopicYN="N">Models, Biological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009243" MajorTopicYN="N">NAD</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017346" MajorTopicYN="N">Protein-Serine-Threonine Kinases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029701" MajorTopicYN="N">Saccharomyces cerevisiae Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="Y">Signal Transduction</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020123" MajorTopicYN="N">Sirolimus</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Sir2</Keyword>
<Keyword MajorTopicYN="N">TOR</Keyword>
<Keyword MajorTopicYN="N">copy number variation</Keyword>
<Keyword MajorTopicYN="N">homologous recombination</Keyword>
<Keyword MajorTopicYN="N">ribosomal DNA</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>7</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>7</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>11</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">26195783</ArticleId>
<ArticleId IdType="pii">1505015112</ArticleId>
<ArticleId IdType="doi">10.1073/pnas.1505015112</ArticleId>
<ArticleId IdType="pmc">PMC4534215</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Science. 2000 Sep 22;289(5487):2126-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11000115</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1987 Mar 27;48(6):1071-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3548996</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Cells. 2002 Feb;7(2):99-113</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11895475</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2002 Nov;22(22):8056-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12391171</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Nov 22;277(47):45099-107</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12297502</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2003 Mar;23(5):1558-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12588976</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 May 8;423(6936):181-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12736687</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2003 Jul;12(1):135-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12887899</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2003 Oct;23(19):7044-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12972620</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2004 May 14;117(4):441-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15137938</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2004;32(14):4257-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15304563</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1968 Apr 19;160(3825):272-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4867987</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1988 Nov 18;55(4):637-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3052854</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1989 Mar 10;56(5):771-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2647300</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1989 Aug;9(8):3464-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2677675</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Cells. 1996 May;1(5):465-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9078378</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1998 Dec 15;12(24):3821-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9869636</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1999 Jul;152(3):909-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10388811</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2005 May 15;19(10):1199-210</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15905408</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Sep 2;309(5740):1581-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16141077</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2005;33(19):6319-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16269823</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2006 Jul 11;16(13):1280-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16815704</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2007 Feb;175(2):477-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17322354</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chromosoma. 2007 Apr;116(2):79-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17180700</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2007 Aug;9(8):923-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17643116</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2007 Oct 2;5(10):e261</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17914901</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2008 Jun;179(2):793-809</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18558650</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2008;4(9):e1000175</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18773114</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Mol Biol Rev. 2008 Dec;72(4):686-727</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19052325</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Cell Biol. 2009 Dec;21(6):855-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19796927</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Med. 2010;61:437-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20059347</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2010 Feb 5;327(5966):693-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20133573</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2010 Apr 1;464(7289):713-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20360734</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2010 Apr 16;328(5976):321-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20395504</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2011 Mar;39(4):1336-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20947565</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2011 Oct;28(10):2883-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21546356</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2011 Nov 1;39(20):8778-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21768125</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2011 Dec;189(4):1177-201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22174183</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2012;8(3):e1002539</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22396658</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2012 Aug;40(14):6534-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22553361</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2012 Aug 31;586(18):2868-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22828279</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2013;9(1):e1003237</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23357952</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2013 Apr;9(4):e1003410</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23593017</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2013 Oct;9(10):e1003899</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24204308</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1974 Aug;71(8):3078-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4528573</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1980 Apr 3;284(5755):426-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6987539</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1984 Dec;39(2 Pt 1):377-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6094015</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2001 Jan;21(1):136-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11113188</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000C20 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000C20 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:26195783
   |texte=   Regulation of ribosomal DNA amplification by the TOR pathway.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:26195783" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020