Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Constitutive Tor2 Activity Promotes Retention of the Amino Acid Transporter Agp3 at Trans-Golgi/Endosomes in Fission Yeast.

Identifieur interne : 000B68 ( Main/Corpus ); précédent : 000B67; suivant : 000B69

Constitutive Tor2 Activity Promotes Retention of the Amino Acid Transporter Agp3 at Trans-Golgi/Endosomes in Fission Yeast.

Auteurs : Qingbin Liu ; Yan Ma ; Xin Zhou ; Tomoyuki Furuyashiki

Source :

RBID : pubmed:26447710

English descriptors

Abstract

Amino acid transporters are located at specific subcellular compartments, and their localizations are regulated by the extracellular availability of amino acids. In yeast, target of rapamycin (TOR) activation induces the internalization of amino acid transporters located at the plasma membrane. However, whether and how TOR signaling regulates other amino acid transporters located at intracellular compartments remains unknown. Here, we demonstrate that in the fission yeast, the TOR inhibitor Torin-1 induces the transfer of several yellow fluorescent protein (YFP)-fused intracellular amino acid transporters, including Agp3, Isp5, Aat1, and Put4, from trans-Golgi/endosomes into the vacuoles. By contrast, the localizations of YFP-fused Can1, Fnx1, and Fnx2 transporter proteins were unaffected upon Torin-1 treatment. There are two TOR isoforms in fission yeast, Tor1 and Tor2. Whereas tor1 deletion did not affect the Torin-1-induced transfer of Agp3-YFP, Tor2 inhibition using a temperature-sensitive mutant induced the transfer of Agp3-YFP to the vacuolar lumen, similar to the effects of Torin-1 treatment. Tor2 inhibition also induced the transfer of the YFP-fused Isp5, Aat1, and Put4 transporter proteins to the vacuoles, although only partial transfer of the latter two transporters was observed. Under nitrogen depletion accompanied by reduced Tor2 activity, Agp3-YFP was transferred from the trans-Golgi/endosomes to the plasma membrane and then to the vacuoles, where it was degraded by the vacuolar proteases Isp6 and Psp3. Mutants with constitutively active Tor2 showed delayed transfer of Agp3-YFP to the plasma membrane upon nitrogen depletion. Cells lacking Tsc2, a negative regulator of Tor2, also showed a delay in this process in a Tor2-dependent manner. Taken together, these findings suggest that constitutive Tor2 activity is critical for the retention of amino acid transporters at trans-Golgi/endosomes. Moreover, nitrogen depletion suppresses Tor2 activity through Tsc2, thereby promoting the surface expression of these transporters.

DOI: 10.1371/journal.pone.0139045
PubMed: 26447710
PubMed Central: PMC4598100

Links to Exploration step

pubmed:26447710

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Constitutive Tor2 Activity Promotes Retention of the Amino Acid Transporter Agp3 at Trans-Golgi/Endosomes in Fission Yeast.</title>
<author>
<name sortKey="Liu, Qingbin" sort="Liu, Qingbin" uniqKey="Liu Q" first="Qingbin" last="Liu">Qingbin Liu</name>
<affiliation>
<nlm:affiliation>Division of Pharmacology, Kobe University Graduate School of Medicine, Kobe, Japan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ma, Yan" sort="Ma, Yan" uniqKey="Ma Y" first="Yan" last="Ma">Yan Ma</name>
<affiliation>
<nlm:affiliation>Division of Pharmacology, Kobe University Graduate School of Medicine, Kobe, Japan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zhou, Xin" sort="Zhou, Xin" uniqKey="Zhou X" first="Xin" last="Zhou">Xin Zhou</name>
<affiliation>
<nlm:affiliation>Department of Oncology, the First Affiliated Hospital of Liaoning Medical University, Jinzhou, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Furuyashiki, Tomoyuki" sort="Furuyashiki, Tomoyuki" uniqKey="Furuyashiki T" first="Tomoyuki" last="Furuyashiki">Tomoyuki Furuyashiki</name>
<affiliation>
<nlm:affiliation>Division of Pharmacology, Kobe University Graduate School of Medicine, Kobe, Japan.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:26447710</idno>
<idno type="pmid">26447710</idno>
<idno type="doi">10.1371/journal.pone.0139045</idno>
<idno type="pmc">PMC4598100</idno>
<idno type="wicri:Area/Main/Corpus">000B68</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000B68</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Constitutive Tor2 Activity Promotes Retention of the Amino Acid Transporter Agp3 at Trans-Golgi/Endosomes in Fission Yeast.</title>
<author>
<name sortKey="Liu, Qingbin" sort="Liu, Qingbin" uniqKey="Liu Q" first="Qingbin" last="Liu">Qingbin Liu</name>
<affiliation>
<nlm:affiliation>Division of Pharmacology, Kobe University Graduate School of Medicine, Kobe, Japan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ma, Yan" sort="Ma, Yan" uniqKey="Ma Y" first="Yan" last="Ma">Yan Ma</name>
<affiliation>
<nlm:affiliation>Division of Pharmacology, Kobe University Graduate School of Medicine, Kobe, Japan.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zhou, Xin" sort="Zhou, Xin" uniqKey="Zhou X" first="Xin" last="Zhou">Xin Zhou</name>
<affiliation>
<nlm:affiliation>Department of Oncology, the First Affiliated Hospital of Liaoning Medical University, Jinzhou, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Furuyashiki, Tomoyuki" sort="Furuyashiki, Tomoyuki" uniqKey="Furuyashiki T" first="Tomoyuki" last="Furuyashiki">Tomoyuki Furuyashiki</name>
<affiliation>
<nlm:affiliation>Division of Pharmacology, Kobe University Graduate School of Medicine, Kobe, Japan.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Transport Systems (metabolism)</term>
<term>Endosomes (metabolism)</term>
<term>Golgi Apparatus (metabolism)</term>
<term>Nitrogen (metabolism)</term>
<term>Phosphatidylinositol 3-Kinases (metabolism)</term>
<term>Protein Transport (MeSH)</term>
<term>Schizosaccharomyces (cytology)</term>
<term>Schizosaccharomyces (metabolism)</term>
<term>Schizosaccharomyces pombe Proteins (metabolism)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Amino Acid Transport Systems</term>
<term>Nitrogen</term>
<term>Phosphatidylinositol 3-Kinases</term>
<term>Schizosaccharomyces pombe Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="cytology" xml:lang="en">
<term>Schizosaccharomyces</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Endosomes</term>
<term>Golgi Apparatus</term>
<term>Schizosaccharomyces</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Protein Transport</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Amino acid transporters are located at specific subcellular compartments, and their localizations are regulated by the extracellular availability of amino acids. In yeast, target of rapamycin (TOR) activation induces the internalization of amino acid transporters located at the plasma membrane. However, whether and how TOR signaling regulates other amino acid transporters located at intracellular compartments remains unknown. Here, we demonstrate that in the fission yeast, the TOR inhibitor Torin-1 induces the transfer of several yellow fluorescent protein (YFP)-fused intracellular amino acid transporters, including Agp3, Isp5, Aat1, and Put4, from trans-Golgi/endosomes into the vacuoles. By contrast, the localizations of YFP-fused Can1, Fnx1, and Fnx2 transporter proteins were unaffected upon Torin-1 treatment. There are two TOR isoforms in fission yeast, Tor1 and Tor2. Whereas tor1 deletion did not affect the Torin-1-induced transfer of Agp3-YFP, Tor2 inhibition using a temperature-sensitive mutant induced the transfer of Agp3-YFP to the vacuolar lumen, similar to the effects of Torin-1 treatment. Tor2 inhibition also induced the transfer of the YFP-fused Isp5, Aat1, and Put4 transporter proteins to the vacuoles, although only partial transfer of the latter two transporters was observed. Under nitrogen depletion accompanied by reduced Tor2 activity, Agp3-YFP was transferred from the trans-Golgi/endosomes to the plasma membrane and then to the vacuoles, where it was degraded by the vacuolar proteases Isp6 and Psp3. Mutants with constitutively active Tor2 showed delayed transfer of Agp3-YFP to the plasma membrane upon nitrogen depletion. Cells lacking Tsc2, a negative regulator of Tor2, also showed a delay in this process in a Tor2-dependent manner. Taken together, these findings suggest that constitutive Tor2 activity is critical for the retention of amino acid transporters at trans-Golgi/endosomes. Moreover, nitrogen depletion suppresses Tor2 activity through Tsc2, thereby promoting the surface expression of these transporters. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">26447710</PMID>
<DateCompleted>
<Year>2016</Year>
<Month>06</Month>
<Day>07</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>10</Volume>
<Issue>10</Issue>
<PubDate>
<Year>2015</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS One</ISOAbbreviation>
</Journal>
<ArticleTitle>Constitutive Tor2 Activity Promotes Retention of the Amino Acid Transporter Agp3 at Trans-Golgi/Endosomes in Fission Yeast.</ArticleTitle>
<Pagination>
<MedlinePgn>e0139045</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0139045</ELocationID>
<Abstract>
<AbstractText>Amino acid transporters are located at specific subcellular compartments, and their localizations are regulated by the extracellular availability of amino acids. In yeast, target of rapamycin (TOR) activation induces the internalization of amino acid transporters located at the plasma membrane. However, whether and how TOR signaling regulates other amino acid transporters located at intracellular compartments remains unknown. Here, we demonstrate that in the fission yeast, the TOR inhibitor Torin-1 induces the transfer of several yellow fluorescent protein (YFP)-fused intracellular amino acid transporters, including Agp3, Isp5, Aat1, and Put4, from trans-Golgi/endosomes into the vacuoles. By contrast, the localizations of YFP-fused Can1, Fnx1, and Fnx2 transporter proteins were unaffected upon Torin-1 treatment. There are two TOR isoforms in fission yeast, Tor1 and Tor2. Whereas tor1 deletion did not affect the Torin-1-induced transfer of Agp3-YFP, Tor2 inhibition using a temperature-sensitive mutant induced the transfer of Agp3-YFP to the vacuolar lumen, similar to the effects of Torin-1 treatment. Tor2 inhibition also induced the transfer of the YFP-fused Isp5, Aat1, and Put4 transporter proteins to the vacuoles, although only partial transfer of the latter two transporters was observed. Under nitrogen depletion accompanied by reduced Tor2 activity, Agp3-YFP was transferred from the trans-Golgi/endosomes to the plasma membrane and then to the vacuoles, where it was degraded by the vacuolar proteases Isp6 and Psp3. Mutants with constitutively active Tor2 showed delayed transfer of Agp3-YFP to the plasma membrane upon nitrogen depletion. Cells lacking Tsc2, a negative regulator of Tor2, also showed a delay in this process in a Tor2-dependent manner. Taken together, these findings suggest that constitutive Tor2 activity is critical for the retention of amino acid transporters at trans-Golgi/endosomes. Moreover, nitrogen depletion suppresses Tor2 activity through Tsc2, thereby promoting the surface expression of these transporters. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Liu</LastName>
<ForeName>Qingbin</ForeName>
<Initials>Q</Initials>
<AffiliationInfo>
<Affiliation>Division of Pharmacology, Kobe University Graduate School of Medicine, Kobe, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ma</LastName>
<ForeName>Yan</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>Division of Pharmacology, Kobe University Graduate School of Medicine, Kobe, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhou</LastName>
<ForeName>Xin</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>Department of Oncology, the First Affiliated Hospital of Liaoning Medical University, Jinzhou, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Furuyashiki</LastName>
<ForeName>Tomoyuki</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>Division of Pharmacology, Kobe University Graduate School of Medicine, Kobe, Japan.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>10</Month>
<Day>08</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C000608141">Agp3 protein, S pombe</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D026905">Amino Acid Transport Systems</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029702">Schizosaccharomyces pombe Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C471573">Tsc2 protein, S pombe</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.-</RegistryNumber>
<NameOfSubstance UI="D019869">Phosphatidylinositol 3-Kinases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.137</RegistryNumber>
<NameOfSubstance UI="C513100">tor2 protein, S pombe</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>N762921K75</RegistryNumber>
<NameOfSubstance UI="D009584">Nitrogen</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D026905" MajorTopicYN="N">Amino Acid Transport Systems</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011992" MajorTopicYN="N">Endosomes</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006056" MajorTopicYN="N">Golgi Apparatus</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009584" MajorTopicYN="N">Nitrogen</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019869" MajorTopicYN="N">Phosphatidylinositol 3-Kinases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D021381" MajorTopicYN="N">Protein Transport</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012568" MajorTopicYN="N">Schizosaccharomyces</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="Y">cytology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029702" MajorTopicYN="N">Schizosaccharomyces pombe Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2015</Year>
<Month>06</Month>
<Day>15</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2015</Year>
<Month>09</Month>
<Day>07</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>10</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>10</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>6</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">26447710</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0139045</ArticleId>
<ArticleId IdType="pii">PONE-D-15-26055</ArticleId>
<ArticleId IdType="pmc">PMC4598100</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Feb 27;104(9):3514-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17360675</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 Mar 20;284(12):8023-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19150980</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2012 Mar;190(3):885-929</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22419079</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2010 Mar 1;123(Pt 5):777-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20144990</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2006 Jul;24(7):841-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16823372</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1996 Dec;16(12):6752-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8943330</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Cell. 2014 Nov 10;26(5):754-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25446900</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2008 Jun 25;582(15):2225-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18503766</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2014 Mar 15;127(Pt 6):1346-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24424027</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2009 Oct 15;122(Pt 20):3589-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19812304</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Cells. 2007 Dec;12(12):1357-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18076573</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2007 Mar;175(3):1153-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17179073</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2013 Sep 1;126(Pt 17):3972-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23813957</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Apr 4;283(14):8919-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18245087</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2012 Apr 15;125(Pt 8):1920-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22344254</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2015 Jan 9;347(6218):194-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25567907</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1999 Dec 9;402(6762):689-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10604478</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2010 Apr 16;141(2):290-303</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20381137</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2011 Nov 23;147(5):1104-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22118465</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2007 Apr;27(8):3154-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17261596</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2013 Oct;195(2):457-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23934889</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2004 Jun;15(6):2920-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15047861</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014;9(11):e111936</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25372384</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2012 Apr 13;149(2):274-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22500797</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Cells. 2009 Aug;14(8):1015-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19624755</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2011 Apr;90(1):203-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21153812</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Cells. 2006 Dec;11(12):1367-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17121544</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Genet Genomics. 2008 May;279(5):441-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18219492</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2004 Mar;24(6):2324-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14993272</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Open. 2014 May 29;3(6):542-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24876389</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000B68 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000B68 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:26447710
   |texte=   Constitutive Tor2 Activity Promotes Retention of the Amino Acid Transporter Agp3 at Trans-Golgi/Endosomes in Fission Yeast.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:26447710" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020