Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Autophagy Promotes Replication of Influenza A Virus In Vitro.

Identifieur interne : 000392 ( Main/Corpus ); précédent : 000391; suivant : 000393

Autophagy Promotes Replication of Influenza A Virus In Vitro.

Auteurs : Ruifang Wang ; Yinxing Zhu ; Jiachang Zhao ; Chenwei Ren ; Peng Li ; Huanchun Chen ; Meilin Jin ; Hongbo Zhou

Source :

RBID : pubmed:30541828

English descriptors

Abstract

Influenza A virus (IAV) infection could induce autophagosome accumulation. However, the impact of the autophagy machinery on IAV infection remains controversial. Here, we showed that induction of cellular autophagy by starvation or rapamycin treatment increases progeny virus production, while disruption of autophagy using a small interfering RNA (siRNA) and pharmacological inhibitor reduces progeny virus production. Further studies revealed that alteration of autophagy significantly affects the early stages of the virus life cycle or viral RNA synthesis. Importantly, we demonstrated that overexpression of both the IAV M2 and NP proteins alone leads to the lipidation of LC3 to LC3-II and a redistribution of LC3 from the cytosol to punctate vesicles indicative of authentic autophagosomes. Intriguingly, both M2 and NP colocalize and interact with LC3 puncta during M2 or NP transfection alone and IAV infection, leading to an increase in viral ribonucleoprotein (vRNP) export and infectious viral particle formation, which indicates that the IAV-host autophagy interaction plays a critical role in regulating IAV replication. We showed that NP and M2 induce the AKT-mTOR-dependent autophagy pathway and an increase in HSP90AA1 expression. Finally, our studies provided evidence that IAV replication needs an autophagy pathway to enhance viral RNA synthesis via the interaction of PB2 and HSP90AA1 by modulating HSP90AA1 expression and the AKT-mTOR signaling pathway in host cells. Collectively, our studies uncover a new mechanism that NP- and M2-mediated autophagy functions in different stages of virus replication in the pathogenicity of influenza A virus.IMPORTANCE Autophagy impacts the replication cycle of many viruses. However, the role of the autophagy machinery in IAV replication remains unclear. Therefore, we explored the detailed mechanisms utilized by IAV to promote its replication. We demonstrated that IAV NP- and M2-mediated autophagy promotes IAV replication by regulating the AKT-mTOR signaling pathway and HSP90AA1 expression. The interaction of PB2 and HSP90AA1 results in the increase of viral RNA synthesis first; subsequently the binding of NP to LC3 favors vRNP export, and later the interaction of M2 and LC3 leads to an increase in the production of infectious viral particles, thus accelerating viral progeny production. These findings improve our understanding of IAV pathogenicity in host cells.

DOI: 10.1128/JVI.01984-18
PubMed: 30541828
PubMed Central: PMC6363991

Links to Exploration step

pubmed:30541828

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Autophagy Promotes Replication of Influenza A Virus
<i>In Vitro</i>
.</title>
<author>
<name sortKey="Wang, Ruifang" sort="Wang, Ruifang" uniqKey="Wang R" first="Ruifang" last="Wang">Ruifang Wang</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zhu, Yinxing" sort="Zhu, Yinxing" uniqKey="Zhu Y" first="Yinxing" last="Zhu">Yinxing Zhu</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zhao, Jiachang" sort="Zhao, Jiachang" uniqKey="Zhao J" first="Jiachang" last="Zhao">Jiachang Zhao</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ren, Chenwei" sort="Ren, Chenwei" uniqKey="Ren C" first="Chenwei" last="Ren">Chenwei Ren</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Li, Peng" sort="Li, Peng" uniqKey="Li P" first="Peng" last="Li">Peng Li</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chen, Huanchun" sort="Chen, Huanchun" uniqKey="Chen H" first="Huanchun" last="Chen">Huanchun Chen</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Jin, Meilin" sort="Jin, Meilin" uniqKey="Jin M" first="Meilin" last="Jin">Meilin Jin</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zhou, Hongbo" sort="Zhou, Hongbo" uniqKey="Zhou H" first="Hongbo" last="Zhou">Hongbo Zhou</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China hbzhou@mail.hzau.edu.cn.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.</nlm:affiliation>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:30541828</idno>
<idno type="pmid">30541828</idno>
<idno type="doi">10.1128/JVI.01984-18</idno>
<idno type="pmc">PMC6363991</idno>
<idno type="wicri:Area/Main/Corpus">000392</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000392</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Autophagy Promotes Replication of Influenza A Virus
<i>In Vitro</i>
.</title>
<author>
<name sortKey="Wang, Ruifang" sort="Wang, Ruifang" uniqKey="Wang R" first="Ruifang" last="Wang">Ruifang Wang</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zhu, Yinxing" sort="Zhu, Yinxing" uniqKey="Zhu Y" first="Yinxing" last="Zhu">Yinxing Zhu</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zhao, Jiachang" sort="Zhao, Jiachang" uniqKey="Zhao J" first="Jiachang" last="Zhao">Jiachang Zhao</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Ren, Chenwei" sort="Ren, Chenwei" uniqKey="Ren C" first="Chenwei" last="Ren">Chenwei Ren</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Li, Peng" sort="Li, Peng" uniqKey="Li P" first="Peng" last="Li">Peng Li</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Chen, Huanchun" sort="Chen, Huanchun" uniqKey="Chen H" first="Huanchun" last="Chen">Huanchun Chen</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Jin, Meilin" sort="Jin, Meilin" uniqKey="Jin M" first="Meilin" last="Jin">Meilin Jin</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.</nlm:affiliation>
</affiliation>
</author>
<author>
<name sortKey="Zhou, Hongbo" sort="Zhou, Hongbo" uniqKey="Zhou H" first="Hongbo" last="Zhou">Hongbo Zhou</name>
<affiliation>
<nlm:affiliation>State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China hbzhou@mail.hzau.edu.cn.</nlm:affiliation>
</affiliation>
<affiliation>
<nlm:affiliation>Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.</nlm:affiliation>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of virology</title>
<idno type="eISSN">1098-5514</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>A549 Cells (MeSH)</term>
<term>Animals (MeSH)</term>
<term>Autophagy (physiology)</term>
<term>Dogs (MeSH)</term>
<term>HEK293 Cells (MeSH)</term>
<term>Host-Pathogen Interactions (MeSH)</term>
<term>Humans (MeSH)</term>
<term>Influenza A virus (genetics)</term>
<term>Influenza A virus (metabolism)</term>
<term>Influenza, Human (MeSH)</term>
<term>Madin Darby Canine Kidney Cells (MeSH)</term>
<term>Microtubule-Associated Proteins (metabolism)</term>
<term>Protein Binding (MeSH)</term>
<term>RNA, Small Interfering (genetics)</term>
<term>RNA, Viral (metabolism)</term>
<term>Ribonucleoproteins (metabolism)</term>
<term>Signal Transduction (MeSH)</term>
<term>Sirolimus (pharmacology)</term>
<term>Viral Core Proteins (metabolism)</term>
<term>Virus Replication (physiology)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>RNA, Small Interfering</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Microtubule-Associated Proteins</term>
<term>RNA, Viral</term>
<term>Ribonucleoproteins</term>
<term>Viral Core Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Influenza A virus</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Influenza A virus</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Sirolimus</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Autophagy</term>
<term>Virus Replication</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>A549 Cells</term>
<term>Animals</term>
<term>Dogs</term>
<term>HEK293 Cells</term>
<term>Host-Pathogen Interactions</term>
<term>Humans</term>
<term>Influenza, Human</term>
<term>Madin Darby Canine Kidney Cells</term>
<term>Protein Binding</term>
<term>Signal Transduction</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Influenza A virus (IAV) infection could induce autophagosome accumulation. However, the impact of the autophagy machinery on IAV infection remains controversial. Here, we showed that induction of cellular autophagy by starvation or rapamycin treatment increases progeny virus production, while disruption of autophagy using a small interfering RNA (siRNA) and pharmacological inhibitor reduces progeny virus production. Further studies revealed that alteration of autophagy significantly affects the early stages of the virus life cycle or viral RNA synthesis. Importantly, we demonstrated that overexpression of both the IAV M2 and NP proteins alone leads to the lipidation of LC3 to LC3-II and a redistribution of LC3 from the cytosol to punctate vesicles indicative of authentic autophagosomes. Intriguingly, both M2 and NP colocalize and interact with LC3 puncta during M2 or NP transfection alone and IAV infection, leading to an increase in viral ribonucleoprotein (vRNP) export and infectious viral particle formation, which indicates that the IAV-host autophagy interaction plays a critical role in regulating IAV replication. We showed that NP and M2 induce the AKT-mTOR-dependent autophagy pathway and an increase in HSP90AA1 expression. Finally, our studies provided evidence that IAV replication needs an autophagy pathway to enhance viral RNA synthesis via the interaction of PB2 and HSP90AA1 by modulating HSP90AA1 expression and the AKT-mTOR signaling pathway in host cells. Collectively, our studies uncover a new mechanism that NP- and M2-mediated autophagy functions in different stages of virus replication in the pathogenicity of influenza A virus.
<b>IMPORTANCE</b>
Autophagy impacts the replication cycle of many viruses. However, the role of the autophagy machinery in IAV replication remains unclear. Therefore, we explored the detailed mechanisms utilized by IAV to promote its replication. We demonstrated that IAV NP- and M2-mediated autophagy promotes IAV replication by regulating the AKT-mTOR signaling pathway and HSP90AA1 expression. The interaction of PB2 and HSP90AA1 results in the increase of viral RNA synthesis first; subsequently the binding of NP to LC3 favors vRNP export, and later the interaction of M2 and LC3 leads to an increase in the production of infectious viral particles, thus accelerating viral progeny production. These findings improve our understanding of IAV pathogenicity in host cells.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">30541828</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>12</Month>
<Day>16</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>03</Month>
<Day>09</Day>
</DateRevised>
<Article PubModel="Electronic-Print">
<Journal>
<ISSN IssnType="Electronic">1098-5514</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>93</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2019</Year>
<Month>02</Month>
<Day>15</Day>
</PubDate>
</JournalIssue>
<Title>Journal of virology</Title>
<ISOAbbreviation>J Virol</ISOAbbreviation>
</Journal>
<ArticleTitle>Autophagy Promotes Replication of Influenza A Virus
<i>In Vitro</i>
.</ArticleTitle>
<ELocationID EIdType="pii" ValidYN="Y">e01984-18</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1128/JVI.01984-18</ELocationID>
<Abstract>
<AbstractText>Influenza A virus (IAV) infection could induce autophagosome accumulation. However, the impact of the autophagy machinery on IAV infection remains controversial. Here, we showed that induction of cellular autophagy by starvation or rapamycin treatment increases progeny virus production, while disruption of autophagy using a small interfering RNA (siRNA) and pharmacological inhibitor reduces progeny virus production. Further studies revealed that alteration of autophagy significantly affects the early stages of the virus life cycle or viral RNA synthesis. Importantly, we demonstrated that overexpression of both the IAV M2 and NP proteins alone leads to the lipidation of LC3 to LC3-II and a redistribution of LC3 from the cytosol to punctate vesicles indicative of authentic autophagosomes. Intriguingly, both M2 and NP colocalize and interact with LC3 puncta during M2 or NP transfection alone and IAV infection, leading to an increase in viral ribonucleoprotein (vRNP) export and infectious viral particle formation, which indicates that the IAV-host autophagy interaction plays a critical role in regulating IAV replication. We showed that NP and M2 induce the AKT-mTOR-dependent autophagy pathway and an increase in HSP90AA1 expression. Finally, our studies provided evidence that IAV replication needs an autophagy pathway to enhance viral RNA synthesis via the interaction of PB2 and HSP90AA1 by modulating HSP90AA1 expression and the AKT-mTOR signaling pathway in host cells. Collectively, our studies uncover a new mechanism that NP- and M2-mediated autophagy functions in different stages of virus replication in the pathogenicity of influenza A virus.
<b>IMPORTANCE</b>
Autophagy impacts the replication cycle of many viruses. However, the role of the autophagy machinery in IAV replication remains unclear. Therefore, we explored the detailed mechanisms utilized by IAV to promote its replication. We demonstrated that IAV NP- and M2-mediated autophagy promotes IAV replication by regulating the AKT-mTOR signaling pathway and HSP90AA1 expression. The interaction of PB2 and HSP90AA1 results in the increase of viral RNA synthesis first; subsequently the binding of NP to LC3 favors vRNP export, and later the interaction of M2 and LC3 leads to an increase in the production of infectious viral particles, thus accelerating viral progeny production. These findings improve our understanding of IAV pathogenicity in host cells.</AbstractText>
<CopyrightInformation>Copyright © 2019 American Society for Microbiology.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y" EqualContrib="Y">
<LastName>Wang</LastName>
<ForeName>Ruifang</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y" EqualContrib="Y">
<LastName>Zhu</LastName>
<ForeName>Yinxing</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhao</LastName>
<ForeName>Jiachang</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ren</LastName>
<ForeName>Chenwei</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Peng</ForeName>
<Initials>P</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>Huanchun</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Jin</LastName>
<ForeName>Meilin</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhou</LastName>
<ForeName>Hongbo</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China hbzhou@mail.hzau.edu.cn.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>02</Month>
<Day>05</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Virol</MedlineTA>
<NlmUniqueID>0113724</NlmUniqueID>
<ISSNLinking>0022-538X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008869">Microtubule-Associated Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D034741">RNA, Small Interfering</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012367">RNA, Viral</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012261">Ribonucleoproteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014758">Viral Core Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C466626">light chain 3, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>W36ZG6FT64</RegistryNumber>
<NameOfSubstance UI="D020123">Sirolimus</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000072283" MajorTopicYN="N">A549 Cells</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001343" MajorTopicYN="N">Autophagy</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004285" MajorTopicYN="N">Dogs</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D057809" MajorTopicYN="N">HEK293 Cells</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054884" MajorTopicYN="N">Host-Pathogen Interactions</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009980" MajorTopicYN="N">Influenza A virus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007251" MajorTopicYN="N">Influenza, Human</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D061985" MajorTopicYN="N">Madin Darby Canine Kidney Cells</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008869" MajorTopicYN="N">Microtubule-Associated Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011485" MajorTopicYN="N">Protein Binding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D034741" MajorTopicYN="N">RNA, Small Interfering</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012367" MajorTopicYN="N">RNA, Viral</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012261" MajorTopicYN="N">Ribonucleoproteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020123" MajorTopicYN="N">Sirolimus</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014758" MajorTopicYN="N">Viral Core Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014779" MajorTopicYN="N">Virus Replication</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">HSP90AA1</Keyword>
<Keyword MajorTopicYN="Y">IAV</Keyword>
<Keyword MajorTopicYN="Y">LC3</Keyword>
<Keyword MajorTopicYN="Y">M2</Keyword>
<Keyword MajorTopicYN="Y">NP</Keyword>
<Keyword MajorTopicYN="Y">autophagy</Keyword>
<Keyword MajorTopicYN="Y">replication</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>11</Month>
<Day>09</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>11</Month>
<Day>27</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>12</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>12</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>12</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30541828</ArticleId>
<ArticleId IdType="pii">JVI.01984-18</ArticleId>
<ArticleId IdType="doi">10.1128/JVI.01984-18</ArticleId>
<ArticleId IdType="pmc">PMC6363991</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Biochim Biophys Acta. 2012 Mar;1823(3):674-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21945180</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2007 Oct;9(10):1102-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17909521</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2013 Jul;15(7):713-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23817233</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2000 Sep 26;97(20):10832-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10995457</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Host Microbe. 2014 May 14;15(5):564-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24832451</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Autophagy. 2015;11(3):503-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25714412</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2005 May;3(5):e156</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15884975</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Autophagy. 2009 Oct;5(7):937-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19625776</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2009 May;90(Pt 5):1093-1103</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19264601</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Autophagy. 2010 Aug;6(6):764-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20639694</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1997 Mar 17;16(6):1248-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9135141</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1998 Nov;72(11):8586-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9765397</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Autophagy. 2013 Feb 1;9(2):124-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23295650</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Cycle. 2010 Apr 1;9(7):1295-1307</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20305376</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hepatology. 2011 Feb;53(2):406-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21274862</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2010 Oct 22;40(2):280-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20965422</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2012 Nov 14;31(22):4304-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23064152</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 May 1;284(18):12297-305</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19258318</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Vaccine. 2007 Jun 28;25(27):5086-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17544181</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2000 Dec 1;290(5497):1717-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11099404</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Nov 22;277(47):45306-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12226087</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Apr 7;281(14):8997-9000</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16407184</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2002 Apr;83(Pt 4):723-734</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11907320</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Cell Biol. 2015 Jun;25(6):354-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25759175</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2008 Feb 8;4(2):e25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18248095</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Biochem Cell Biol. 2016 Mar;72:100-108</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26794463</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2013 Jul;15(7):727-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23817237</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 1988 Jun;164(2):562-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3369093</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2010 Sep;84(17):8765-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20573832</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Top Microbiol Immunol. 2009;335:323-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19802573</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Host Microbe. 2009 Oct 22;6(4):367-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19837376</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2012;8(11):e1003046</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23209416</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Autophagy. 2009 Apr;5(3):321-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19066474</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2009 Jul;10(7):458-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19491929</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Pharmacol Sin. 2005 Dec;26(12):1421-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16297339</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2012 Dec 11;109(50):E3405-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23184977</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2006 Aug;80(16):8178-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16873274</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Autophagy. 2018;14(2):336-346</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29166823</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2015 Feb 5;57(3):456-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25601754</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Autophagy. 2008 Apr;4(3):286-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18094610</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Autophagy. 2008 Feb;4(2):151-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18188003</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2010 Feb 5;140(3):313-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20144757</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Microbiol. 2016 Aug;14(8):479-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27396566</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2012 Dec 21;338(6114):1631-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23180774</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Host Microbe. 2009 Oct 22;6(4):299-300</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19837369</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Autophagy. 2009 Jul;5(5):649-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19287211</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2010 Sep 15;405(1):1-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20580051</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2001 Feb;75(4):1899-908</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11160689</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Signal. 2009 Aug 18;2(84):pe51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19690328</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2008 May 10;374(2):240-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18353420</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2013 Dec;87(24):13107-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24027311</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Influenza Other Respir Viruses. 2015 May;9(3):99-100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25824028</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Aug 18;106(33):14046-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19666601</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Microbiol. 2006 Aug;8(8):1336-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16882036</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virus Res. 2009 Aug;143(2):147-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19481124</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2010 Sep;12(9):814-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20811353</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1982 Mar;79(6):1889-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6952238</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2005 Mar;79(6):3595-605</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15731254</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Signal. 2012 Feb 21;5(212):ra16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22355189</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1969 Jun 28;42(3):485-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5804156</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Mar 12;279(11):10136-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14699140</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Autophagy. 2015;11(5):852-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25945743</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2008 Sep;82(18):9143-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18596087</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2001 Sep 7;293(5536):1840-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11546875</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2005 May 20;121(4):567-577</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15907470</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2007 Feb;81(3):1339-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17121807</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Rev Med Virol. 2010 Nov;20(6):380-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20853340</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2012 Nov;86(22):12003-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22915817</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Med. 2003 Mar-Apr;9(3-4):65-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12865942</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Host Microbe. 2010 Feb 18;7(2):115-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20159618</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Top Microbiol Immunol. 2009;335:1-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19802558</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 2007 Mar;88(Pt 3):942-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17325368</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Chem. 2009 May-Jun;390(5-6):509-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19335204</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virology. 2011 Mar 15;411(2):229-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21237476</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 1990 Nov;64(11):5669-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2214032</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000392 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd -nk 000392 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Corpus
   |type=    RBID
   |clé=     pubmed:30541828
   |texte=   Autophagy Promotes Replication of Influenza A Virus In Vitro.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Corpus/RBID.i   -Sk "pubmed:30541828" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Corpus/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020