Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Biosynthesis of Poly-beta-Hydroxyalkanoates from Pentoses by Pseudomonas pseudoflava.

Identifieur interne : 004C91 ( Main/Exploration ); précédent : 004C90; suivant : 004C92

Biosynthesis of Poly-beta-Hydroxyalkanoates from Pentoses by Pseudomonas pseudoflava.

Auteurs : J L Bertrand [Canada] ; B A Ramsay ; J A Ramsay ; C. Chavarie

Source :

RBID : pubmed:16348320

Abstract

The potential of Pseudomonas pseudoflava to produce poly-beta-hydroxyalkanoates (PHAs) from pentoses was studied. This organism was able to use a hydrolysate from the hemicellulosic fraction of poplar wood as a carbon and energy source for its growth. However, in batch cultures, growth was inhibited completely at hydrolysate concentrations higher than 30% (vol/vol). When P. pseudoflava was grown on the major sugars present in hemicelluloses in batch cultures, poly-beta-hydroxybutyric acid (PHB) accumulated when glucose, xylose, or arabinose was the sole carbon source, with the final PHB content varying from 17% (wt/wt) of the biomass dry weight on arabinose to 22% (wt/wt) of the biomass dry weight on glucose and xylose. Specific growth rates were 0.58 h on glucose, 0.13 h on xylose, and 0.10 h on arabinose, while the specific PHB production rates based on total biomass ranged from 0.02 g g h on arabinose to 0.11 g g h on glucose. PHB weight-average molecular weights were 640,000 on arabinose and 1,100,000 on glucose and xylose. The absolute amount of PHB in the cells decreased markedly when nitrogen limitation was relaxed by feeding ammonium sulfate at the end of the PHB accumulation stage of the arabinose and xylose fermentations. Copolymers of beta-hydroxybutyric and beta-hydroxyvaleric acids were produced when propionic acid was added to shake flasks containing 10 g of glucose liter. The beta-hydroxyvaleric acid monomer content attained a maximum of 45 mol% when the initial propionic acid concentration was 2 g liter.

DOI: 10.1128/AEM.56.10.3133-3138.1990
PubMed: 16348320
PubMed Central: PMC184911


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Biosynthesis of Poly-beta-Hydroxyalkanoates from Pentoses by Pseudomonas pseudoflava.</title>
<author>
<name sortKey="Bertrand, J L" sort="Bertrand, J L" uniqKey="Bertrand J" first="J L" last="Bertrand">J L Bertrand</name>
<affiliation wicri:level="1">
<nlm:affiliation>Département de Génie Chimique, Ecole Polytechnique de Montréal, C.P. 6079, Succursale A, Montréal, Québec H3C 3A7, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Département de Génie Chimique, Ecole Polytechnique de Montréal, C.P. 6079, Succursale A, Montréal, Québec H3C 3A7</wicri:regionArea>
<wicri:noRegion>Québec H3C 3A7</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ramsay, B A" sort="Ramsay, B A" uniqKey="Ramsay B" first="B A" last="Ramsay">B A Ramsay</name>
</author>
<author>
<name sortKey="Ramsay, J A" sort="Ramsay, J A" uniqKey="Ramsay J" first="J A" last="Ramsay">J A Ramsay</name>
</author>
<author>
<name sortKey="Chavarie, C" sort="Chavarie, C" uniqKey="Chavarie C" first="C" last="Chavarie">C. Chavarie</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="1990">1990</date>
<idno type="RBID">pubmed:16348320</idno>
<idno type="pmid">16348320</idno>
<idno type="pmc">PMC184911</idno>
<idno type="doi">10.1128/AEM.56.10.3133-3138.1990</idno>
<idno type="wicri:Area/Main/Corpus">004C79</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">004C79</idno>
<idno type="wicri:Area/Main/Curation">004C79</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">004C79</idno>
<idno type="wicri:Area/Main/Exploration">004C79</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Biosynthesis of Poly-beta-Hydroxyalkanoates from Pentoses by Pseudomonas pseudoflava.</title>
<author>
<name sortKey="Bertrand, J L" sort="Bertrand, J L" uniqKey="Bertrand J" first="J L" last="Bertrand">J L Bertrand</name>
<affiliation wicri:level="1">
<nlm:affiliation>Département de Génie Chimique, Ecole Polytechnique de Montréal, C.P. 6079, Succursale A, Montréal, Québec H3C 3A7, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Département de Génie Chimique, Ecole Polytechnique de Montréal, C.P. 6079, Succursale A, Montréal, Québec H3C 3A7</wicri:regionArea>
<wicri:noRegion>Québec H3C 3A7</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ramsay, B A" sort="Ramsay, B A" uniqKey="Ramsay B" first="B A" last="Ramsay">B A Ramsay</name>
</author>
<author>
<name sortKey="Ramsay, J A" sort="Ramsay, J A" uniqKey="Ramsay J" first="J A" last="Ramsay">J A Ramsay</name>
</author>
<author>
<name sortKey="Chavarie, C" sort="Chavarie, C" uniqKey="Chavarie C" first="C" last="Chavarie">C. Chavarie</name>
</author>
</analytic>
<series>
<title level="j">Applied and environmental microbiology</title>
<idno type="ISSN">0099-2240</idno>
<imprint>
<date when="1990" type="published">1990</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The potential of Pseudomonas pseudoflava to produce poly-beta-hydroxyalkanoates (PHAs) from pentoses was studied. This organism was able to use a hydrolysate from the hemicellulosic fraction of poplar wood as a carbon and energy source for its growth. However, in batch cultures, growth was inhibited completely at hydrolysate concentrations higher than 30% (vol/vol). When P. pseudoflava was grown on the major sugars present in hemicelluloses in batch cultures, poly-beta-hydroxybutyric acid (PHB) accumulated when glucose, xylose, or arabinose was the sole carbon source, with the final PHB content varying from 17% (wt/wt) of the biomass dry weight on arabinose to 22% (wt/wt) of the biomass dry weight on glucose and xylose. Specific growth rates were 0.58 h on glucose, 0.13 h on xylose, and 0.10 h on arabinose, while the specific PHB production rates based on total biomass ranged from 0.02 g g h on arabinose to 0.11 g g h on glucose. PHB weight-average molecular weights were 640,000 on arabinose and 1,100,000 on glucose and xylose. The absolute amount of PHB in the cells decreased markedly when nitrogen limitation was relaxed by feeding ammonium sulfate at the end of the PHB accumulation stage of the arabinose and xylose fermentations. Copolymers of beta-hydroxybutyric and beta-hydroxyvaleric acids were produced when propionic acid was added to shake flasks containing 10 g of glucose liter. The beta-hydroxyvaleric acid monomer content attained a maximum of 45 mol% when the initial propionic acid concentration was 2 g liter.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">16348320</PMID>
<DateCompleted>
<Year>2010</Year>
<Month>06</Month>
<Day>25</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>07</Month>
<Day>27</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0099-2240</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>56</Volume>
<Issue>10</Issue>
<PubDate>
<Year>1990</Year>
<Month>Oct</Month>
</PubDate>
</JournalIssue>
<Title>Applied and environmental microbiology</Title>
<ISOAbbreviation>Appl Environ Microbiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Biosynthesis of Poly-beta-Hydroxyalkanoates from Pentoses by Pseudomonas pseudoflava.</ArticleTitle>
<Pagination>
<MedlinePgn>3133-8</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>The potential of Pseudomonas pseudoflava to produce poly-beta-hydroxyalkanoates (PHAs) from pentoses was studied. This organism was able to use a hydrolysate from the hemicellulosic fraction of poplar wood as a carbon and energy source for its growth. However, in batch cultures, growth was inhibited completely at hydrolysate concentrations higher than 30% (vol/vol). When P. pseudoflava was grown on the major sugars present in hemicelluloses in batch cultures, poly-beta-hydroxybutyric acid (PHB) accumulated when glucose, xylose, or arabinose was the sole carbon source, with the final PHB content varying from 17% (wt/wt) of the biomass dry weight on arabinose to 22% (wt/wt) of the biomass dry weight on glucose and xylose. Specific growth rates were 0.58 h on glucose, 0.13 h on xylose, and 0.10 h on arabinose, while the specific PHB production rates based on total biomass ranged from 0.02 g g h on arabinose to 0.11 g g h on glucose. PHB weight-average molecular weights were 640,000 on arabinose and 1,100,000 on glucose and xylose. The absolute amount of PHB in the cells decreased markedly when nitrogen limitation was relaxed by feeding ammonium sulfate at the end of the PHB accumulation stage of the arabinose and xylose fermentations. Copolymers of beta-hydroxybutyric and beta-hydroxyvaleric acids were produced when propionic acid was added to shake flasks containing 10 g of glucose liter. The beta-hydroxyvaleric acid monomer content attained a maximum of 45 mol% when the initial propionic acid concentration was 2 g liter.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Bertrand</LastName>
<ForeName>J L</ForeName>
<Initials>JL</Initials>
<AffiliationInfo>
<Affiliation>Département de Génie Chimique, Ecole Polytechnique de Montréal, C.P. 6079, Succursale A, Montréal, Québec H3C 3A7, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ramsay</LastName>
<ForeName>B A</ForeName>
<Initials>BA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ramsay</LastName>
<ForeName>J A</ForeName>
<Initials>JA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Chavarie</LastName>
<ForeName>C</ForeName>
<Initials>C</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Appl Environ Microbiol</MedlineTA>
<NlmUniqueID>7605801</NlmUniqueID>
<ISSNLinking>0099-2240</ISSNLinking>
</MedlineJournalInfo>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>1990</Year>
<Month>10</Month>
<Day>1</Day>
<Hour>0</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>1990</Year>
<Month>10</Month>
<Day>1</Day>
<Hour>0</Hour>
<Minute>1</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>1990</Year>
<Month>10</Month>
<Day>1</Day>
<Hour>0</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">16348320</ArticleId>
<ArticleId IdType="pmc">PMC184911</ArticleId>
<ArticleId IdType="doi">10.1128/AEM.56.10.3133-3138.1990</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Appl Environ Microbiol. 1989 Aug;55(8):1949-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2506811</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Biochem Eng Biotechnol. 1985;32:61-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2932894</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biosci Rep. 1988 Dec;8(6):537-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3242641</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 1973 May;134(1):239-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4198758</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Microb Physiol. 1973;10:135-266</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4594739</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Microbiol. 1966 May;43(2):159-271</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5963505</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1982 Jul;44(1):238-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6181737</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Biochem Eng Biotechnol. 1983;27:1-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6437152</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Biochem Eng Biotechnol. 1983;27:101-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6437153</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Biochem Eng Biotechnol. 1983;27:119-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6437154</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1983 May;154(2):870-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6841319</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1961 Jul 29;191:463-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13747776</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Mikrobiol. 1963 Dec 10;47:167-200</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14106079</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol. 1964 Jul;12:301-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14199017</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Microbiol. 1951 Oct;5(4):698-703</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14908008</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Neurosurg Anesthesiol. 1989 Sep;1(3):227-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15815278</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1983 Jan;45(1):71-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16346184</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1988 Aug;54(8):1977-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16347708</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1989 Mar;55(3):584-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16347867</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Canada</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Chavarie, C" sort="Chavarie, C" uniqKey="Chavarie C" first="C" last="Chavarie">C. Chavarie</name>
<name sortKey="Ramsay, B A" sort="Ramsay, B A" uniqKey="Ramsay B" first="B A" last="Ramsay">B A Ramsay</name>
<name sortKey="Ramsay, J A" sort="Ramsay, J A" uniqKey="Ramsay J" first="J A" last="Ramsay">J A Ramsay</name>
</noCountry>
<country name="Canada">
<noRegion>
<name sortKey="Bertrand, J L" sort="Bertrand, J L" uniqKey="Bertrand J" first="J L" last="Bertrand">J L Bertrand</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 004C91 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 004C91 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:16348320
   |texte=   Biosynthesis of Poly-beta-Hydroxyalkanoates from Pentoses by Pseudomonas pseudoflava.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:16348320" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020