Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Photosynthetic gas exchange response of poplars to steady-state and dynamic light environments.

Identifieur interne : 004B74 ( Main/Exploration ); précédent : 004B73; suivant : 004B75

Photosynthetic gas exchange response of poplars to steady-state and dynamic light environments.

Auteurs : John S. Roden [États-Unis] ; Robert W. Pearcy [États-Unis]

Source :

RBID : pubmed:28313609

Abstract

The steady-state and dynamic photosynthetic response of two poplar species (Populus tremuloides and P. fremontii) to variations in photon flux density (PFD) were observed with a field portable gas exchange system. These poplars were shown to be very shade intolerant with high light saturation (800 to 1300 μmol photons m-2 s-1) and light compensation (70 to 100 μmol m-2 s-1) points. Understory poplar leaves showed no physiological acclimation to understory light environments. These plants become photosynthetically induced quickly (10 min). Activation of Rubisco was the primary limitation for induction, with stomatal opening playing only a minor role. Leaves maintained high stomatal conductances and stomata were unresponsive to variations in PFD. Leaves were very efficient at utilizing rapidly fluctuating light environments similar to those naturally occurring in canopies. Post-illumination CO2 fixation contributed proportionally more to the carbon gain of leaves during short frequent lightflecks than longer less frequent ones. The benefits of a more dynamic understory light environment for the carbon economy of these species are discussed.

DOI: 10.1007/BF00317673
PubMed: 28313609


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Photosynthetic gas exchange response of poplars to steady-state and dynamic light environments.</title>
<author>
<name sortKey="Roden, John S" sort="Roden, John S" uniqKey="Roden J" first="John S" last="Roden">John S. Roden</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Botany, University of California, 95616, Davis, CA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Botany, University of California, 95616, Davis, CA</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Pearcy, Robert W" sort="Pearcy, Robert W" uniqKey="Pearcy R" first="Robert W" last="Pearcy">Robert W. Pearcy</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Botany, University of California, 95616, Davis, CA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Botany, University of California, 95616, Davis, CA</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="1993">1993</date>
<idno type="RBID">pubmed:28313609</idno>
<idno type="pmid">28313609</idno>
<idno type="doi">10.1007/BF00317673</idno>
<idno type="wicri:Area/Main/Corpus">004B79</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">004B79</idno>
<idno type="wicri:Area/Main/Curation">004B79</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">004B79</idno>
<idno type="wicri:Area/Main/Exploration">004B79</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Photosynthetic gas exchange response of poplars to steady-state and dynamic light environments.</title>
<author>
<name sortKey="Roden, John S" sort="Roden, John S" uniqKey="Roden J" first="John S" last="Roden">John S. Roden</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Botany, University of California, 95616, Davis, CA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Botany, University of California, 95616, Davis, CA</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Pearcy, Robert W" sort="Pearcy, Robert W" uniqKey="Pearcy R" first="Robert W" last="Pearcy">Robert W. Pearcy</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Botany, University of California, 95616, Davis, CA, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Botany, University of California, 95616, Davis, CA</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Oecologia</title>
<idno type="eISSN">1432-1939</idno>
<imprint>
<date when="1993" type="published">1993</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The steady-state and dynamic photosynthetic response of two poplar species (Populus tremuloides and P. fremontii) to variations in photon flux density (PFD) were observed with a field portable gas exchange system. These poplars were shown to be very shade intolerant with high light saturation (800 to 1300 μmol photons m
<sup>-2</sup>
s
<sup>-1</sup>
) and light compensation (70 to 100 μmol m
<sup>-2</sup>
s
<sup>-1</sup>
) points. Understory poplar leaves showed no physiological acclimation to understory light environments. These plants become photosynthetically induced quickly (10 min). Activation of Rubisco was the primary limitation for induction, with stomatal opening playing only a minor role. Leaves maintained high stomatal conductances and stomata were unresponsive to variations in PFD. Leaves were very efficient at utilizing rapidly fluctuating light environments similar to those naturally occurring in canopies. Post-illumination CO
<sub>2</sub>
fixation contributed proportionally more to the carbon gain of leaves during short frequent lightflecks than longer less frequent ones. The benefits of a more dynamic understory light environment for the carbon economy of these species are discussed.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">28313609</PMID>
<DateRevised>
<Year>2019</Year>
<Month>11</Month>
<Day>20</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1432-1939</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>93</Volume>
<Issue>2</Issue>
<PubDate>
<Year>1993</Year>
<Month>Mar</Month>
</PubDate>
</JournalIssue>
<Title>Oecologia</Title>
<ISOAbbreviation>Oecologia</ISOAbbreviation>
</Journal>
<ArticleTitle>Photosynthetic gas exchange response of poplars to steady-state and dynamic light environments.</ArticleTitle>
<Pagination>
<MedlinePgn>208-214</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/BF00317673</ELocationID>
<Abstract>
<AbstractText>The steady-state and dynamic photosynthetic response of two poplar species (Populus tremuloides and P. fremontii) to variations in photon flux density (PFD) were observed with a field portable gas exchange system. These poplars were shown to be very shade intolerant with high light saturation (800 to 1300 μmol photons m
<sup>-2</sup>
s
<sup>-1</sup>
) and light compensation (70 to 100 μmol m
<sup>-2</sup>
s
<sup>-1</sup>
) points. Understory poplar leaves showed no physiological acclimation to understory light environments. These plants become photosynthetically induced quickly (10 min). Activation of Rubisco was the primary limitation for induction, with stomatal opening playing only a minor role. Leaves maintained high stomatal conductances and stomata were unresponsive to variations in PFD. Leaves were very efficient at utilizing rapidly fluctuating light environments similar to those naturally occurring in canopies. Post-illumination CO
<sub>2</sub>
fixation contributed proportionally more to the carbon gain of leaves during short frequent lightflecks than longer less frequent ones. The benefits of a more dynamic understory light environment for the carbon economy of these species are discussed.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Roden</LastName>
<ForeName>John S</ForeName>
<Initials>JS</Initials>
<AffiliationInfo>
<Affiliation>Department of Botany, University of California, 95616, Davis, CA, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Pearcy</LastName>
<ForeName>Robert W</ForeName>
<Initials>RW</Initials>
<AffiliationInfo>
<Affiliation>Department of Botany, University of California, 95616, Davis, CA, USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Oecologia</MedlineTA>
<NlmUniqueID>0150372</NlmUniqueID>
<ISSNLinking>0029-8549</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Dynamic photosynthesis</Keyword>
<Keyword MajorTopicYN="N">Induction state</Keyword>
<Keyword MajorTopicYN="N">Poplars</Keyword>
<Keyword MajorTopicYN="N">Post-illumination CO2 fixation</Keyword>
<Keyword MajorTopicYN="N">Sunflecks</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>1992</Year>
<Month>03</Month>
<Day>13</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>1992</Year>
<Month>08</Month>
<Day>17</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>3</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>1993</Year>
<Month>3</Month>
<Day>1</Day>
<Hour>0</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>1993</Year>
<Month>3</Month>
<Day>1</Day>
<Hour>0</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">28313609</ArticleId>
<ArticleId IdType="doi">10.1007/BF00317673</ArticleId>
<ArticleId IdType="pii">10.1007/BF00317673</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Tree Physiol. 1990 Mar;6(1):11-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14972957</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 1981 Dec;153(4):376-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24276943</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1986 Jul;69(4):517-523</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28311610</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1982 May;69(5):1018-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16662336</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 1987 Aug;171(4):549-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24225719</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1989 Sep;80(4):471-476</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28312830</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1992 May;99(1):227-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16668854</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1986 Jul;69(4):524-531</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28311611</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1993 Mar;93(2):201-207</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28313608</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1985 Feb;65(3):338-347</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28310437</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1985 Nov;79(3):896-902</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16664512</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1983 Apr;58(1):26-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28310643</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1992 Nov;92 (2):222-228</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28313055</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1988 Mar;86(3):782-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16665988</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Californie</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Californie">
<name sortKey="Roden, John S" sort="Roden, John S" uniqKey="Roden J" first="John S" last="Roden">John S. Roden</name>
</region>
<name sortKey="Pearcy, Robert W" sort="Pearcy, Robert W" uniqKey="Pearcy R" first="Robert W" last="Pearcy">Robert W. Pearcy</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 004B74 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 004B74 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:28313609
   |texte=   Photosynthetic gas exchange response of poplars to steady-state and dynamic light environments.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:28313609" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020