Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Research note: Can decreased transpiration limit plant nitrogen acquisition in elevated CO2?

Identifieur interne : 004536 ( Main/Exploration ); précédent : 004535; suivant : 004537

Research note: Can decreased transpiration limit plant nitrogen acquisition in elevated CO2?

Auteurs : Evan P. Mcdonald [États-Unis] ; John E. Erickson [États-Unis] ; Eric L. Kruger [États-Unis]

Source :

RBID : pubmed:32689563

Abstract

N acquisition often lags behind accelerated C gain in plants exposed to CO2-enriched atmospheres. To help resolve the causes of this lag, we considered its possible link with stomatal closure, a common first-order response to elevated CO2 that can decrease transpiration. Specifically, we tested the hypothesis that declines in transpiration, and hence mass flow of soil solution, can decrease delivery of mobile N to the root and thereby limit plant N acquisition. We altered transpiration by manipulating relative humidity (RH) and atmospheric [CO2]. During a 7-d period, we grew potted cottonwood (Populus deltoides Bartr.) trees in humidified (76% RH) and non-humidified (43% RH) glasshouses ventilated with either CO2-enriched or non-enriched air (~1000 vs ~380μmol mol-1). We monitored effects of elevated humidity and/or CO2 on stomatal conductance, whole-plant transpiration, plant biomass gain, and N accumulation. To facilitate the latter, NO3- enriched in 15N (5 atom%) was added to all pots at the outset of the experiment. Transpiration and 15N accumulation decreased when either CO2 or humidity were elevated. The disparity between N accumulation and accelerated C gain in elevated CO2 led to a 19% decrease in shoot N concentration relative to ambient CO2. Across all treatments, 15N gain was positively correlated with root mass (P<0.0001), and a significant portion of the remaining variation (44%) was positively related to transpiration per unit root mass. At a given humidity, transpiration per unit leaf area was positively related to stomatal conductance. Thus, declines in plant N concentration and/or content under CO2 enrichment may be attributable in part to associated decreases in stomatal conductance and transpiration.

DOI: 10.1071/FP02007
PubMed: 32689563


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Research note: Can decreased transpiration limit plant nitrogen acquisition in elevated CO2?</title>
<author>
<name sortKey="Mcdonald, Evan P" sort="Mcdonald, Evan P" uniqKey="Mcdonald E" first="Evan P" last="Mcdonald">Evan P. Mcdonald</name>
<affiliation wicri:level="2">
<nlm:affiliation>Forestry Sciences Laboratory, US Department of Agriculture Forest Service, Rhinelander, WI 54501, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Forestry Sciences Laboratory, US Department of Agriculture Forest Service, Rhinelander, WI 54501</wicri:regionArea>
<placeName>
<region type="state">Wisconsin</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Erickson, John E" sort="Erickson, John E" uniqKey="Erickson J" first="John E" last="Erickson">John E. Erickson</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Forest Ecology and Management, University of Wisconsin - Madison, WI 53706, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Forest Ecology and Management, University of Wisconsin - Madison, WI 53706</wicri:regionArea>
<placeName>
<region type="state">Wisconsin</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Kruger, Eric L" sort="Kruger, Eric L" uniqKey="Kruger E" first="Eric L" last="Kruger">Eric L. Kruger</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Forest Ecology and Management, University of Wisconsin - Madison, WI 53706, USA.Corresponding author; email: elkruger@facstaff.wisc.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2002">2002</date>
<idno type="RBID">pubmed:32689563</idno>
<idno type="pmid">32689563</idno>
<idno type="doi">10.1071/FP02007</idno>
<idno type="wicri:Area/Main/Corpus">004614</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">004614</idno>
<idno type="wicri:Area/Main/Curation">004614</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">004614</idno>
<idno type="wicri:Area/Main/Exploration">004614</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Research note: Can decreased transpiration limit plant nitrogen acquisition in elevated CO2?</title>
<author>
<name sortKey="Mcdonald, Evan P" sort="Mcdonald, Evan P" uniqKey="Mcdonald E" first="Evan P" last="Mcdonald">Evan P. Mcdonald</name>
<affiliation wicri:level="2">
<nlm:affiliation>Forestry Sciences Laboratory, US Department of Agriculture Forest Service, Rhinelander, WI 54501, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Forestry Sciences Laboratory, US Department of Agriculture Forest Service, Rhinelander, WI 54501</wicri:regionArea>
<placeName>
<region type="state">Wisconsin</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Erickson, John E" sort="Erickson, John E" uniqKey="Erickson J" first="John E" last="Erickson">John E. Erickson</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Forest Ecology and Management, University of Wisconsin - Madison, WI 53706, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Forest Ecology and Management, University of Wisconsin - Madison, WI 53706</wicri:regionArea>
<placeName>
<region type="state">Wisconsin</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Kruger, Eric L" sort="Kruger, Eric L" uniqKey="Kruger E" first="Eric L" last="Kruger">Eric L. Kruger</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Forest Ecology and Management, University of Wisconsin - Madison, WI 53706, USA.Corresponding author; email: elkruger@facstaff.wisc.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Functional plant biology : FPB</title>
<idno type="eISSN">1445-4416</idno>
<imprint>
<date when="2002" type="published">2002</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">N acquisition often lags behind accelerated C gain in plants exposed to CO2-enriched atmospheres. To help resolve the causes of this lag, we considered its possible link with stomatal closure, a common first-order response to elevated CO2 that can decrease transpiration. Specifically, we tested the hypothesis that declines in transpiration, and hence mass flow of soil solution, can decrease delivery of mobile N to the root and thereby limit plant N acquisition. We altered transpiration by manipulating relative humidity (RH) and atmospheric [CO2]. During a 7-d period, we grew potted cottonwood (Populus deltoides Bartr.) trees in humidified (76% RH) and non-humidified (43% RH) glasshouses ventilated with either CO2-enriched or non-enriched air (~1000 vs ~380μmol mol
<sup>-1</sup>
). We monitored effects of elevated humidity and/or CO2 on stomatal conductance, whole-plant transpiration, plant biomass gain, and N accumulation. To facilitate the latter, NO3
<sup>-</sup>
enriched in
<sup>15</sup>
N (5 atom%) was added to all pots at the outset of the experiment. Transpiration and
<sup>15</sup>
N accumulation decreased when either CO2 or humidity were elevated. The disparity between N accumulation and accelerated C gain in elevated CO2 led to a 19% decrease in shoot N concentration relative to ambient CO2. Across all treatments,
<sup>15</sup>
N gain was positively correlated with root mass (P<0.0001), and a significant portion of the remaining variation (44%) was positively related to transpiration per unit root mass. At a given humidity, transpiration per unit leaf area was positively related to stomatal conductance. Thus, declines in plant N concentration and/or content under CO2 enrichment may be attributable in part to associated decreases in stomatal conductance and transpiration.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">32689563</PMID>
<DateRevised>
<Year>2020</Year>
<Month>07</Month>
<Day>21</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1445-4416</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>29</Volume>
<Issue>9</Issue>
<PubDate>
<Year>2002</Year>
<Month>Aug</Month>
</PubDate>
</JournalIssue>
<Title>Functional plant biology : FPB</Title>
<ISOAbbreviation>Funct Plant Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>Research note: Can decreased transpiration limit plant nitrogen acquisition in elevated CO2?</ArticleTitle>
<Pagination>
<MedlinePgn>1115-1120</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1071/FP02007</ELocationID>
<Abstract>
<AbstractText>N acquisition often lags behind accelerated C gain in plants exposed to CO2-enriched atmospheres. To help resolve the causes of this lag, we considered its possible link with stomatal closure, a common first-order response to elevated CO2 that can decrease transpiration. Specifically, we tested the hypothesis that declines in transpiration, and hence mass flow of soil solution, can decrease delivery of mobile N to the root and thereby limit plant N acquisition. We altered transpiration by manipulating relative humidity (RH) and atmospheric [CO2]. During a 7-d period, we grew potted cottonwood (Populus deltoides Bartr.) trees in humidified (76% RH) and non-humidified (43% RH) glasshouses ventilated with either CO2-enriched or non-enriched air (~1000 vs ~380μmol mol
<sup>-1</sup>
). We monitored effects of elevated humidity and/or CO2 on stomatal conductance, whole-plant transpiration, plant biomass gain, and N accumulation. To facilitate the latter, NO3
<sup>-</sup>
enriched in
<sup>15</sup>
N (5 atom%) was added to all pots at the outset of the experiment. Transpiration and
<sup>15</sup>
N accumulation decreased when either CO2 or humidity were elevated. The disparity between N accumulation and accelerated C gain in elevated CO2 led to a 19% decrease in shoot N concentration relative to ambient CO2. Across all treatments,
<sup>15</sup>
N gain was positively correlated with root mass (P<0.0001), and a significant portion of the remaining variation (44%) was positively related to transpiration per unit root mass. At a given humidity, transpiration per unit leaf area was positively related to stomatal conductance. Thus, declines in plant N concentration and/or content under CO2 enrichment may be attributable in part to associated decreases in stomatal conductance and transpiration.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>McDonald</LastName>
<ForeName>Evan P</ForeName>
<Initials>EP</Initials>
<AffiliationInfo>
<Affiliation>Forestry Sciences Laboratory, US Department of Agriculture Forest Service, Rhinelander, WI 54501, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Erickson</LastName>
<ForeName>John E</ForeName>
<Initials>JE</Initials>
<AffiliationInfo>
<Affiliation>Department of Forest Ecology and Management, University of Wisconsin - Madison, WI 53706, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Kruger</LastName>
<ForeName>Eric L</ForeName>
<Initials>EL</Initials>
<AffiliationInfo>
<Affiliation>Department of Forest Ecology and Management, University of Wisconsin - Madison, WI 53706, USA.Corresponding author; email: elkruger@facstaff.wisc.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>Australia</Country>
<MedlineTA>Funct Plant Biol</MedlineTA>
<NlmUniqueID>101154361</NlmUniqueID>
<ISSNLinking>1445-4416</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>7</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2002</Year>
<Month>8</Month>
<Day>1</Day>
<Hour>0</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2002</Year>
<Month>8</Month>
<Day>1</Day>
<Hour>0</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32689563</ArticleId>
<ArticleId IdType="pii">FP02007</ArticleId>
<ArticleId IdType="doi">10.1071/FP02007</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Wisconsin</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Wisconsin">
<name sortKey="Mcdonald, Evan P" sort="Mcdonald, Evan P" uniqKey="Mcdonald E" first="Evan P" last="Mcdonald">Evan P. Mcdonald</name>
</region>
<name sortKey="Erickson, John E" sort="Erickson, John E" uniqKey="Erickson J" first="John E" last="Erickson">John E. Erickson</name>
<name sortKey="Kruger, Eric L" sort="Kruger, Eric L" uniqKey="Kruger E" first="Eric L" last="Kruger">Eric L. Kruger</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 004536 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 004536 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32689563
   |texte=   Research note: Can decreased transpiration limit plant nitrogen acquisition in elevated CO2?
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32689563" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020