Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Metabolic profiling of the sink-to-source transition in developing leaves of quaking aspen.

Identifieur interne : 004233 ( Main/Exploration ); précédent : 004232; suivant : 004234

Metabolic profiling of the sink-to-source transition in developing leaves of quaking aspen.

Auteurs : Mijeong Lee Jeong [États-Unis] ; Hongying Jiang ; Huann-Sheng Chen ; Chung-Jui Tsai ; Scott A. Harding

Source :

RBID : pubmed:15448196

Descripteurs français

English descriptors

Abstract

Profiles of small polar metabolites from aspen (Populus tremuloides Michx.) leaves spanning the sink-to-source transition zone were compared. Approximately 25% of 250 to 300 routinely resolved peaks were identified, with carbohydrates, organic acids, and amino acids being most abundant. Two-thirds of identified metabolites exhibited greater than 4-fold changes in abundance during leaf ontogeny. In the context of photosynthetic and respiratory measurements, profile data yielded information consistent with expected developmental trends in carbon-heterotrophic and carbon-autotrophic metabolism. Suc concentration increased throughout leaf expansion, while hexose sugar concentrations peaked at mid-expansion and decreased sharply thereafter. Amino acid contents generally decreased during leaf expansion, but an early increase in Phe and a later one in Gly and Ser reflected growing commitments to secondary metabolism and photorespiration, respectively. The assimilation of nitrate and utilization of stored Asn appeared to be marked by sequential changes in malate concentration and Asn transaminase activity. Principal component and hierarchical clustering analysis facilitated the grouping of cell wall maturation (pectins, hemicelluloses, and oxalate) and membrane biogenesis markers in relation to developmental changes in carbon and nitrogen assimilation. Metabolite profiling will facilitate investigation of nitrogen use and cellular development in Populus sp. varying widely in their growth and pattern of carbon allocation during sink-to-source development and in response to stress.

DOI: 10.1104/pp.104.044776
PubMed: 15448196
PubMed Central: PMC523395


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Metabolic profiling of the sink-to-source transition in developing leaves of quaking aspen.</title>
<author>
<name sortKey="Jeong, Mijeong Lee" sort="Jeong, Mijeong Lee" uniqKey="Jeong M" first="Mijeong Lee" last="Jeong">Mijeong Lee Jeong</name>
<affiliation wicri:level="1">
<nlm:affiliation>Plant Biotechnology Research Center, School of Forest Resources and Environmental Science , Michigan Technological University, Houghton, Michigan 49931, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Plant Biotechnology Research Center, School of Forest Resources and Environmental Science , Michigan Technological University, Houghton, Michigan 49931</wicri:regionArea>
<wicri:noRegion>Michigan 49931</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Jiang, Hongying" sort="Jiang, Hongying" uniqKey="Jiang H" first="Hongying" last="Jiang">Hongying Jiang</name>
</author>
<author>
<name sortKey="Chen, Huann Sheng" sort="Chen, Huann Sheng" uniqKey="Chen H" first="Huann-Sheng" last="Chen">Huann-Sheng Chen</name>
</author>
<author>
<name sortKey="Tsai, Chung Jui" sort="Tsai, Chung Jui" uniqKey="Tsai C" first="Chung-Jui" last="Tsai">Chung-Jui Tsai</name>
</author>
<author>
<name sortKey="Harding, Scott A" sort="Harding, Scott A" uniqKey="Harding S" first="Scott A" last="Harding">Scott A. Harding</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2004">2004</date>
<idno type="RBID">pubmed:15448196</idno>
<idno type="pmid">15448196</idno>
<idno type="doi">10.1104/pp.104.044776</idno>
<idno type="pmc">PMC523395</idno>
<idno type="wicri:Area/Main/Corpus">004195</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">004195</idno>
<idno type="wicri:Area/Main/Curation">004195</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">004195</idno>
<idno type="wicri:Area/Main/Exploration">004195</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Metabolic profiling of the sink-to-source transition in developing leaves of quaking aspen.</title>
<author>
<name sortKey="Jeong, Mijeong Lee" sort="Jeong, Mijeong Lee" uniqKey="Jeong M" first="Mijeong Lee" last="Jeong">Mijeong Lee Jeong</name>
<affiliation wicri:level="1">
<nlm:affiliation>Plant Biotechnology Research Center, School of Forest Resources and Environmental Science , Michigan Technological University, Houghton, Michigan 49931, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Plant Biotechnology Research Center, School of Forest Resources and Environmental Science , Michigan Technological University, Houghton, Michigan 49931</wicri:regionArea>
<wicri:noRegion>Michigan 49931</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Jiang, Hongying" sort="Jiang, Hongying" uniqKey="Jiang H" first="Hongying" last="Jiang">Hongying Jiang</name>
</author>
<author>
<name sortKey="Chen, Huann Sheng" sort="Chen, Huann Sheng" uniqKey="Chen H" first="Huann-Sheng" last="Chen">Huann-Sheng Chen</name>
</author>
<author>
<name sortKey="Tsai, Chung Jui" sort="Tsai, Chung Jui" uniqKey="Tsai C" first="Chung-Jui" last="Tsai">Chung-Jui Tsai</name>
</author>
<author>
<name sortKey="Harding, Scott A" sort="Harding, Scott A" uniqKey="Harding S" first="Scott A" last="Harding">Scott A. Harding</name>
</author>
</analytic>
<series>
<title level="j">Plant physiology</title>
<idno type="ISSN">0032-0889</idno>
<imprint>
<date when="2004" type="published">2004</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acids (metabolism)</term>
<term>Carbohydrate Metabolism (MeSH)</term>
<term>Cell Respiration (physiology)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Malates (metabolism)</term>
<term>Photosynthesis (physiology)</term>
<term>Plant Leaves (enzymology)</term>
<term>Plant Leaves (growth & development)</term>
<term>Plant Leaves (metabolism)</term>
<term>Populus (growth & development)</term>
<term>Populus (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Acides aminés (métabolisme)</term>
<term>Feuilles de plante (croissance et développement)</term>
<term>Feuilles de plante (enzymologie)</term>
<term>Feuilles de plante (métabolisme)</term>
<term>Malates (métabolisme)</term>
<term>Métabolisme glucidique (MeSH)</term>
<term>Photosynthèse (physiologie)</term>
<term>Populus (croissance et développement)</term>
<term>Populus (métabolisme)</term>
<term>Respiration cellulaire (physiologie)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Amino Acids</term>
<term>Malates</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Feuilles de plante</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Feuilles de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Plant Leaves</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Plant Leaves</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Plant Leaves</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Acides aminés</term>
<term>Feuilles de plante</term>
<term>Malates</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Photosynthèse</term>
<term>Respiration cellulaire</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Cell Respiration</term>
<term>Photosynthesis</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Carbohydrate Metabolism</term>
<term>Gene Expression Regulation, Plant</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Métabolisme glucidique</term>
<term>Régulation de l'expression des gènes végétaux</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Profiles of small polar metabolites from aspen (Populus tremuloides Michx.) leaves spanning the sink-to-source transition zone were compared. Approximately 25% of 250 to 300 routinely resolved peaks were identified, with carbohydrates, organic acids, and amino acids being most abundant. Two-thirds of identified metabolites exhibited greater than 4-fold changes in abundance during leaf ontogeny. In the context of photosynthetic and respiratory measurements, profile data yielded information consistent with expected developmental trends in carbon-heterotrophic and carbon-autotrophic metabolism. Suc concentration increased throughout leaf expansion, while hexose sugar concentrations peaked at mid-expansion and decreased sharply thereafter. Amino acid contents generally decreased during leaf expansion, but an early increase in Phe and a later one in Gly and Ser reflected growing commitments to secondary metabolism and photorespiration, respectively. The assimilation of nitrate and utilization of stored Asn appeared to be marked by sequential changes in malate concentration and Asn transaminase activity. Principal component and hierarchical clustering analysis facilitated the grouping of cell wall maturation (pectins, hemicelluloses, and oxalate) and membrane biogenesis markers in relation to developmental changes in carbon and nitrogen assimilation. Metabolite profiling will facilitate investigation of nitrogen use and cellular development in Populus sp. varying widely in their growth and pattern of carbon allocation during sink-to-source development and in response to stress.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">15448196</PMID>
<DateCompleted>
<Year>2005</Year>
<Month>01</Month>
<Day>03</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>12</Month>
<Day>24</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0032-0889</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>136</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2004</Year>
<Month>Oct</Month>
</PubDate>
</JournalIssue>
<Title>Plant physiology</Title>
<ISOAbbreviation>Plant Physiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Metabolic profiling of the sink-to-source transition in developing leaves of quaking aspen.</ArticleTitle>
<Pagination>
<MedlinePgn>3364-75</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Profiles of small polar metabolites from aspen (Populus tremuloides Michx.) leaves spanning the sink-to-source transition zone were compared. Approximately 25% of 250 to 300 routinely resolved peaks were identified, with carbohydrates, organic acids, and amino acids being most abundant. Two-thirds of identified metabolites exhibited greater than 4-fold changes in abundance during leaf ontogeny. In the context of photosynthetic and respiratory measurements, profile data yielded information consistent with expected developmental trends in carbon-heterotrophic and carbon-autotrophic metabolism. Suc concentration increased throughout leaf expansion, while hexose sugar concentrations peaked at mid-expansion and decreased sharply thereafter. Amino acid contents generally decreased during leaf expansion, but an early increase in Phe and a later one in Gly and Ser reflected growing commitments to secondary metabolism and photorespiration, respectively. The assimilation of nitrate and utilization of stored Asn appeared to be marked by sequential changes in malate concentration and Asn transaminase activity. Principal component and hierarchical clustering analysis facilitated the grouping of cell wall maturation (pectins, hemicelluloses, and oxalate) and membrane biogenesis markers in relation to developmental changes in carbon and nitrogen assimilation. Metabolite profiling will facilitate investigation of nitrogen use and cellular development in Populus sp. varying widely in their growth and pattern of carbon allocation during sink-to-source development and in response to stress.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Jeong</LastName>
<ForeName>Mijeong Lee</ForeName>
<Initials>ML</Initials>
<AffiliationInfo>
<Affiliation>Plant Biotechnology Research Center, School of Forest Resources and Environmental Science , Michigan Technological University, Houghton, Michigan 49931, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Jiang</LastName>
<ForeName>Hongying</ForeName>
<Initials>H</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>Huann-Sheng</ForeName>
<Initials>HS</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Tsai</LastName>
<ForeName>Chung-Jui</ForeName>
<Initials>CJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Harding</LastName>
<ForeName>Scott A</ForeName>
<Initials>SA</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2004</Year>
<Month>09</Month>
<Day>24</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Plant Physiol</MedlineTA>
<NlmUniqueID>0401224</NlmUniqueID>
<ISSNLinking>0032-0889</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000596">Amino Acids</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D008293">Malates</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>817L1N4CKP</RegistryNumber>
<NameOfSubstance UI="C030298">malic acid</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000596" MajorTopicYN="N">Amino Acids</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D050260" MajorTopicYN="N">Carbohydrate Metabolism</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019069" MajorTopicYN="N">Cell Respiration</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008293" MajorTopicYN="N">Malates</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010788" MajorTopicYN="N">Photosynthesis</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2004</Year>
<Month>9</Month>
<Day>28</Day>
<Hour>5</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2005</Year>
<Month>1</Month>
<Day>4</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2004</Year>
<Month>9</Month>
<Day>28</Day>
<Hour>5</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">15448196</ArticleId>
<ArticleId IdType="doi">10.1104/pp.104.044776</ArticleId>
<ArticleId IdType="pii">pp.104.044776</ArticleId>
<ArticleId IdType="pmc">PMC523395</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Am J Bot. 1999 Aug;86(8):1154-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10449395</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2000 Feb 18;275(7):5016-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10671542</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2000 May;123(1):371-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10806254</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2000 Jul;23(1):131-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10929108</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Chem. 2000 Aug 1;72(15):3573-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10952545</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2000 Sep;124(1):211-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10982436</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2000 Nov;18(11):1157-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11062433</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2001 Jan;13(1):11-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11158526</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2001 Apr;52(357):669-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11413203</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Sep 21;276(38):35523-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11461929</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2001 Mar;212(4):508-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11525507</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2002 Apr;53(370):835-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11912226</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2002 Jun;5(3):218-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11960739</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2002 Jul;22(10):717-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12091153</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1995 Mar;107(3):925-932</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12228412</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1993 Dec;103(4):1147-1154</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12232008</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1994 Dec;106(4):1547-1553</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12232430</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2002 Oct;130(2):796-807</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12376645</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2002 Nov;14(11):2651-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12417692</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Jan;131(1):264-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12529534</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 2003 Feb;270(4):579-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12581198</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2003 Mar;62(6):817-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12590110</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2003 Mar;62(6):875-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12590115</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann N Y Acad Sci. 2002 Dec;980:41-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12594081</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Jun;132(2):440-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12805577</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Sep;133(1):84-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12970477</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1953 Feb;200(2):571-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13034816</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1961 May;236:1235-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13688220</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1961 Feb;236:308-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13752745</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1977 Mar 25;252(6):2032-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14957</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Physiol Plant Mol Biol. 1996 Jun;47:273-298</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15012290</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2004 Aug;219(4):694-704</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15146331</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1992 Sep;100(1):360-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16652969</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1984 Jul;75(3):542-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16663663</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1987 May;84(1):58-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16665405</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1989 Nov;91(3):898-904</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16667154</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1991 May;96(1):159-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16668145</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1991 Feb 15;266(5):2924-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1993666</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 1995 Sep;21(9):1245-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24234624</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 1981 Aug;152(5):461-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24301121</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Photosynth Res. 1995 Nov;46(1-2):117-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24301574</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 1976 Jan;128(3):185-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24430745</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1989 Apr;178(1):107-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2499218</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1999 May;119(3):408-418</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28307764</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1985 Oct;101(4):1288-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3930507</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 1978 Mar 15;81(1):186-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">656093</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Lipid Res. 1983 Sep;24(9):1140-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6631243</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1995 Jul;7(7):887-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7640525</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1993 Jun 15;268(17):12239-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8509360</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1976 May 7;72:248-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">942051</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1998 Nov;118(3):1089-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9808754</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 Dec 8;95(25):14863-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9843981</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Chen, Huann Sheng" sort="Chen, Huann Sheng" uniqKey="Chen H" first="Huann-Sheng" last="Chen">Huann-Sheng Chen</name>
<name sortKey="Harding, Scott A" sort="Harding, Scott A" uniqKey="Harding S" first="Scott A" last="Harding">Scott A. Harding</name>
<name sortKey="Jiang, Hongying" sort="Jiang, Hongying" uniqKey="Jiang H" first="Hongying" last="Jiang">Hongying Jiang</name>
<name sortKey="Tsai, Chung Jui" sort="Tsai, Chung Jui" uniqKey="Tsai C" first="Chung-Jui" last="Tsai">Chung-Jui Tsai</name>
</noCountry>
<country name="États-Unis">
<noRegion>
<name sortKey="Jeong, Mijeong Lee" sort="Jeong, Mijeong Lee" uniqKey="Jeong M" first="Mijeong Lee" last="Jeong">Mijeong Lee Jeong</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 004233 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 004233 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:15448196
   |texte=   Metabolic profiling of the sink-to-source transition in developing leaves of quaking aspen.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:15448196" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020