Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Rates of cuticular penetration of chelated Fe(III): role of humidity, concentration, adjuvants, temperature, and type of chelate.

Identifieur interne : 003F65 ( Main/Exploration ); précédent : 003F64; suivant : 003F66

Rates of cuticular penetration of chelated Fe(III): role of humidity, concentration, adjuvants, temperature, and type of chelate.

Auteurs : Jörg Schönherr [Allemagne] ; Victoria Fernández ; Lukas Schreiber

Source :

RBID : pubmed:15913315

Descripteurs français

English descriptors

Abstract

Time courses of cuticular penetration of FeCl3 and Fe(III) complexes of citric acid, EDTA, EDDHA (Sequestrene 138Fe), imidodisuccinic acid (IDHA), and ligninsulfonic acid (Natrel) were studied using astomatous cuticular membranes (CMs) isolated from Populus x canescens leaves. At 100% relative humidity, the Fe(III) chelates disappeared exponentially with time from the surface of the CMs; that is, penetration was a first-order process that can be described using rate constants or half-times of penetration (t(1/2)). Half-times ranged from 20 to 30 h. At 90% humidity, penetration rates were insignificant with the exception of Natrel, for which t(1/2) amounted to 58 h. Rate constants were independent of temperature (15, 25, and 35 degrees C). Permeability decreased with increasing Fe chelate concentration (IDHA and EDTA). At 100% humidity, half-times measured with FeIDHA were 11 h (2 mmol L(-1)), 17 h (10 mmol L(-1)) and 36 h (20 mmol L(-1)), respectively. In the presence of FeEDTA, penetration of CaCl2 was slowed greatly. Half-times for penetration of CaCl2, which were 1.9 h in the absence of FeEDTA, rose to 3.12 h in the presence of an equimolar concentration of EDTA and 13.3 h when the FeEDTA concentration was doubled. Hence, Fe chelates reduced permeability of CMs to CaCl2 and to the Fe chelates themselves. It is suggested that Fe chelates reduced the size of aqueous pores. This view is supported by the fact that rate constants for calcium salts were about 5 times higher than for Fe chelates with the same molecular weights. Adding Tween 20 (5 g L(-1)) as a humectant did not increase permeability to FeIDHA at 90% humidity and below, while addition of glycine betaine did. Penetration of FeCl3 applied at 5 g L(-1) (pH 1.5) was not a first order process as rate constants decreased rapidly with time. Only 2% of the dose penetrated during the first 2 h and less than that in the subsequent 8 h. Recovery was only 70%. This was attributed to the formation of insoluble Fe hydroxide precipitates on CMs. These results explain why in the past foliar application of Fe compounds had limited success. Inorganic Fe salts are instable and phytotoxic because of low pH, while Fe chelates penetrate slowly and 100% humidity is required for significant penetration rates. Concentrations as low as reasonably possible should be used. These physical facts are expected to apply to stomatous leaf surfaces as well, but absolute rates probably depend on leaf age and plant species. High humidity in stagnant air layers may favor penetration rates across stomatous leaf surfaces when humidity in bulk air is below 100%.

DOI: 10.1021/jf050453t
PubMed: 15913315


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Rates of cuticular penetration of chelated Fe(III): role of humidity, concentration, adjuvants, temperature, and type of chelate.</title>
<author>
<name sortKey="Schonherr, Jorg" sort="Schonherr, Jorg" uniqKey="Schonherr J" first="Jörg" last="Schönherr">Jörg Schönherr</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Vegetable and Fruit Science, University of Hannover, Am Steinberg 3, 31157 Sarstedt, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Institute of Vegetable and Fruit Science, University of Hannover, Am Steinberg 3, 31157 Sarstedt</wicri:regionArea>
<wicri:noRegion>31157 Sarstedt</wicri:noRegion>
<wicri:noRegion>31157 Sarstedt</wicri:noRegion>
<wicri:noRegion>31157 Sarstedt</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Fernandez, Victoria" sort="Fernandez, Victoria" uniqKey="Fernandez V" first="Victoria" last="Fernández">Victoria Fernández</name>
</author>
<author>
<name sortKey="Schreiber, Lukas" sort="Schreiber, Lukas" uniqKey="Schreiber L" first="Lukas" last="Schreiber">Lukas Schreiber</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2005">2005</date>
<idno type="RBID">pubmed:15913315</idno>
<idno type="pmid">15913315</idno>
<idno type="doi">10.1021/jf050453t</idno>
<idno type="wicri:Area/Main/Corpus">004053</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">004053</idno>
<idno type="wicri:Area/Main/Curation">004053</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">004053</idno>
<idno type="wicri:Area/Main/Exploration">004053</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Rates of cuticular penetration of chelated Fe(III): role of humidity, concentration, adjuvants, temperature, and type of chelate.</title>
<author>
<name sortKey="Schonherr, Jorg" sort="Schonherr, Jorg" uniqKey="Schonherr J" first="Jörg" last="Schönherr">Jörg Schönherr</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Vegetable and Fruit Science, University of Hannover, Am Steinberg 3, 31157 Sarstedt, Germany.</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Institute of Vegetable and Fruit Science, University of Hannover, Am Steinberg 3, 31157 Sarstedt</wicri:regionArea>
<wicri:noRegion>31157 Sarstedt</wicri:noRegion>
<wicri:noRegion>31157 Sarstedt</wicri:noRegion>
<wicri:noRegion>31157 Sarstedt</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Fernandez, Victoria" sort="Fernandez, Victoria" uniqKey="Fernandez V" first="Victoria" last="Fernández">Victoria Fernández</name>
</author>
<author>
<name sortKey="Schreiber, Lukas" sort="Schreiber, Lukas" uniqKey="Schreiber L" first="Lukas" last="Schreiber">Lukas Schreiber</name>
</author>
</analytic>
<series>
<title level="j">Journal of agricultural and food chemistry</title>
<idno type="ISSN">0021-8561</idno>
<imprint>
<date when="2005" type="published">2005</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Calcium (metabolism)</term>
<term>Ferric Compounds (metabolism)</term>
<term>Humidity (MeSH)</term>
<term>Iron Chelating Agents (metabolism)</term>
<term>Kinetics (MeSH)</term>
<term>Molecular Weight (MeSH)</term>
<term>Permeability (MeSH)</term>
<term>Plant Leaves (metabolism)</term>
<term>Populus (metabolism)</term>
<term>Temperature (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Agents chélateurs du fer (métabolisme)</term>
<term>Calcium (métabolisme)</term>
<term>Cinétique (MeSH)</term>
<term>Composés du fer III (métabolisme)</term>
<term>Feuilles de plante (métabolisme)</term>
<term>Humidité (MeSH)</term>
<term>Masse moléculaire (MeSH)</term>
<term>Perméabilité (MeSH)</term>
<term>Populus (métabolisme)</term>
<term>Température (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Calcium</term>
<term>Ferric Compounds</term>
<term>Iron Chelating Agents</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Plant Leaves</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Agents chélateurs du fer</term>
<term>Calcium</term>
<term>Composés du fer III</term>
<term>Feuilles de plante</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Humidity</term>
<term>Kinetics</term>
<term>Molecular Weight</term>
<term>Permeability</term>
<term>Temperature</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Cinétique</term>
<term>Humidité</term>
<term>Masse moléculaire</term>
<term>Perméabilité</term>
<term>Température</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Time courses of cuticular penetration of FeCl3 and Fe(III) complexes of citric acid, EDTA, EDDHA (Sequestrene 138Fe), imidodisuccinic acid (IDHA), and ligninsulfonic acid (Natrel) were studied using astomatous cuticular membranes (CMs) isolated from Populus x canescens leaves. At 100% relative humidity, the Fe(III) chelates disappeared exponentially with time from the surface of the CMs; that is, penetration was a first-order process that can be described using rate constants or half-times of penetration (t(1/2)). Half-times ranged from 20 to 30 h. At 90% humidity, penetration rates were insignificant with the exception of Natrel, for which t(1/2) amounted to 58 h. Rate constants were independent of temperature (15, 25, and 35 degrees C). Permeability decreased with increasing Fe chelate concentration (IDHA and EDTA). At 100% humidity, half-times measured with FeIDHA were 11 h (2 mmol L(-1)), 17 h (10 mmol L(-1)) and 36 h (20 mmol L(-1)), respectively. In the presence of FeEDTA, penetration of CaCl2 was slowed greatly. Half-times for penetration of CaCl2, which were 1.9 h in the absence of FeEDTA, rose to 3.12 h in the presence of an equimolar concentration of EDTA and 13.3 h when the FeEDTA concentration was doubled. Hence, Fe chelates reduced permeability of CMs to CaCl2 and to the Fe chelates themselves. It is suggested that Fe chelates reduced the size of aqueous pores. This view is supported by the fact that rate constants for calcium salts were about 5 times higher than for Fe chelates with the same molecular weights. Adding Tween 20 (5 g L(-1)) as a humectant did not increase permeability to FeIDHA at 90% humidity and below, while addition of glycine betaine did. Penetration of FeCl3 applied at 5 g L(-1) (pH 1.5) was not a first order process as rate constants decreased rapidly with time. Only 2% of the dose penetrated during the first 2 h and less than that in the subsequent 8 h. Recovery was only 70%. This was attributed to the formation of insoluble Fe hydroxide precipitates on CMs. These results explain why in the past foliar application of Fe compounds had limited success. Inorganic Fe salts are instable and phytotoxic because of low pH, while Fe chelates penetrate slowly and 100% humidity is required for significant penetration rates. Concentrations as low as reasonably possible should be used. These physical facts are expected to apply to stomatous leaf surfaces as well, but absolute rates probably depend on leaf age and plant species. High humidity in stagnant air layers may favor penetration rates across stomatous leaf surfaces when humidity in bulk air is below 100%.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">15913315</PMID>
<DateCompleted>
<Year>2005</Year>
<Month>07</Month>
<Day>05</Day>
</DateCompleted>
<DateRevised>
<Year>2013</Year>
<Month>11</Month>
<Day>21</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0021-8561</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>53</Volume>
<Issue>11</Issue>
<PubDate>
<Year>2005</Year>
<Month>Jun</Month>
<Day>01</Day>
</PubDate>
</JournalIssue>
<Title>Journal of agricultural and food chemistry</Title>
<ISOAbbreviation>J Agric Food Chem</ISOAbbreviation>
</Journal>
<ArticleTitle>Rates of cuticular penetration of chelated Fe(III): role of humidity, concentration, adjuvants, temperature, and type of chelate.</ArticleTitle>
<Pagination>
<MedlinePgn>4484-92</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Time courses of cuticular penetration of FeCl3 and Fe(III) complexes of citric acid, EDTA, EDDHA (Sequestrene 138Fe), imidodisuccinic acid (IDHA), and ligninsulfonic acid (Natrel) were studied using astomatous cuticular membranes (CMs) isolated from Populus x canescens leaves. At 100% relative humidity, the Fe(III) chelates disappeared exponentially with time from the surface of the CMs; that is, penetration was a first-order process that can be described using rate constants or half-times of penetration (t(1/2)). Half-times ranged from 20 to 30 h. At 90% humidity, penetration rates were insignificant with the exception of Natrel, for which t(1/2) amounted to 58 h. Rate constants were independent of temperature (15, 25, and 35 degrees C). Permeability decreased with increasing Fe chelate concentration (IDHA and EDTA). At 100% humidity, half-times measured with FeIDHA were 11 h (2 mmol L(-1)), 17 h (10 mmol L(-1)) and 36 h (20 mmol L(-1)), respectively. In the presence of FeEDTA, penetration of CaCl2 was slowed greatly. Half-times for penetration of CaCl2, which were 1.9 h in the absence of FeEDTA, rose to 3.12 h in the presence of an equimolar concentration of EDTA and 13.3 h when the FeEDTA concentration was doubled. Hence, Fe chelates reduced permeability of CMs to CaCl2 and to the Fe chelates themselves. It is suggested that Fe chelates reduced the size of aqueous pores. This view is supported by the fact that rate constants for calcium salts were about 5 times higher than for Fe chelates with the same molecular weights. Adding Tween 20 (5 g L(-1)) as a humectant did not increase permeability to FeIDHA at 90% humidity and below, while addition of glycine betaine did. Penetration of FeCl3 applied at 5 g L(-1) (pH 1.5) was not a first order process as rate constants decreased rapidly with time. Only 2% of the dose penetrated during the first 2 h and less than that in the subsequent 8 h. Recovery was only 70%. This was attributed to the formation of insoluble Fe hydroxide precipitates on CMs. These results explain why in the past foliar application of Fe compounds had limited success. Inorganic Fe salts are instable and phytotoxic because of low pH, while Fe chelates penetrate slowly and 100% humidity is required for significant penetration rates. Concentrations as low as reasonably possible should be used. These physical facts are expected to apply to stomatous leaf surfaces as well, but absolute rates probably depend on leaf age and plant species. High humidity in stagnant air layers may favor penetration rates across stomatous leaf surfaces when humidity in bulk air is below 100%.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Schönherr</LastName>
<ForeName>Jörg</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Institute of Vegetable and Fruit Science, University of Hannover, Am Steinberg 3, 31157 Sarstedt, Germany.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Fernández</LastName>
<ForeName>Victoria</ForeName>
<Initials>V</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Schreiber</LastName>
<ForeName>Lukas</ForeName>
<Initials>L</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Agric Food Chem</MedlineTA>
<NlmUniqueID>0374755</NlmUniqueID>
<ISSNLinking>0021-8561</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005290">Ferric Compounds</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D007502">Iron Chelating Agents</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>SY7Q814VUP</RegistryNumber>
<NameOfSubstance UI="D002118">Calcium</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D002118" MajorTopicYN="N">Calcium</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005290" MajorTopicYN="N">Ferric Compounds</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006813" MajorTopicYN="Y">Humidity</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007502" MajorTopicYN="N">Iron Chelating Agents</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007700" MajorTopicYN="N">Kinetics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008970" MajorTopicYN="N">Molecular Weight</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010539" MajorTopicYN="N">Permeability</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013696" MajorTopicYN="Y">Temperature</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2005</Year>
<Month>5</Month>
<Day>26</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2005</Year>
<Month>7</Month>
<Day>6</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2005</Year>
<Month>5</Month>
<Day>26</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">15913315</ArticleId>
<ArticleId IdType="doi">10.1021/jf050453t</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Allemagne</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Fernandez, Victoria" sort="Fernandez, Victoria" uniqKey="Fernandez V" first="Victoria" last="Fernández">Victoria Fernández</name>
<name sortKey="Schreiber, Lukas" sort="Schreiber, Lukas" uniqKey="Schreiber L" first="Lukas" last="Schreiber">Lukas Schreiber</name>
</noCountry>
<country name="Allemagne">
<noRegion>
<name sortKey="Schonherr, Jorg" sort="Schonherr, Jorg" uniqKey="Schonherr J" first="Jörg" last="Schönherr">Jörg Schönherr</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003F65 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 003F65 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:15913315
   |texte=   Rates of cuticular penetration of chelated Fe(III): role of humidity, concentration, adjuvants, temperature, and type of chelate.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:15913315" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020