Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Regulation of sulfate assimilation in Arabidopsis and beyond.

Identifieur interne : 003D33 ( Main/Exploration ); précédent : 003D32; suivant : 003D34

Regulation of sulfate assimilation in Arabidopsis and beyond.

Auteurs : Stanislav Kopriva [Royaume-Uni]

Source :

RBID : pubmed:16464881

Descripteurs français

English descriptors

Abstract

BACKGROUND AND AIMS

Sulfate assimilation is a pathway used by prokaryotes, fungi and photosynthetic organisms to convert inorganic sulfate to sulfide, which is further incorporated into carbon skeletons of amino acids to form cysteine or homocysteine. The pathway is highly regulated in a demand-driven manner; however, this regulation is not necessarily identical in various plant species. Therefore, our knowledge of the regulation of sulfate assimilation is reviewed here in detail with emphasis on different plant species.

SCOPE

Although demand-driven control plays an essential role in regulation of sulfate assimilation in all plants, the molecular mechanisms of the regulation and the effects of various treatments on the individual enzymes and metabolites are often different. This review summarizes (1) the molecular regulation of sulfate assimilation in Arabidopsis thaliana, especially recent data derived from platform technologies and functional genomics, (2) the co-ordination of sulfate, nitrate and carbon assimilations in Lemna minor, (3) the role of sulfate assimilation and glutathione in plant-Rhizobia symbiosis, (4) the cell-specific distribution of sulfate reduction and glutathione synthesis in C(4) plants, (5) the regulation of glutathione biosynthesis in poplar, (6) the knock-out of the adenosine 5'phosphosulfate reductase gene in Physcomitrella patens and identification of 3'-phosphoadenosyl 5'-phosphosulfate reductase in plants, and (7) the sulfur sensing mechanism in green algae.

CONCLUSIONS

As the molecular mechanisms of regulation of the sulfate assimilation pathway are not known, the role of Arabidopsis as a model plant will be further strengthened. However, this review demonstrates that investigations of other plant species will still be necessary to address specific questions of regulation of sulfur nutrition.


DOI: 10.1093/aob/mcl006
PubMed: 16464881
PubMed Central: PMC2803671


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Regulation of sulfate assimilation in Arabidopsis and beyond.</title>
<author>
<name sortKey="Kopriva, Stanislav" sort="Kopriva, Stanislav" uniqKey="Kopriva S" first="Stanislav" last="Kopriva">Stanislav Kopriva</name>
<affiliation wicri:level="1">
<nlm:affiliation>John Innes Centre, Norwich NR4 7UH, UK. stanislav.kopriva@bbsrc.ac.uk</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>John Innes Centre, Norwich NR4 7UH</wicri:regionArea>
<wicri:noRegion>Norwich NR4 7UH</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2006">2006</date>
<idno type="RBID">pubmed:16464881</idno>
<idno type="pmid">16464881</idno>
<idno type="doi">10.1093/aob/mcl006</idno>
<idno type="pmc">PMC2803671</idno>
<idno type="wicri:Area/Main/Corpus">003E68</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">003E68</idno>
<idno type="wicri:Area/Main/Curation">003E68</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">003E68</idno>
<idno type="wicri:Area/Main/Exploration">003E68</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Regulation of sulfate assimilation in Arabidopsis and beyond.</title>
<author>
<name sortKey="Kopriva, Stanislav" sort="Kopriva, Stanislav" uniqKey="Kopriva S" first="Stanislav" last="Kopriva">Stanislav Kopriva</name>
<affiliation wicri:level="1">
<nlm:affiliation>John Innes Centre, Norwich NR4 7UH, UK. stanislav.kopriva@bbsrc.ac.uk</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>John Innes Centre, Norwich NR4 7UH</wicri:regionArea>
<wicri:noRegion>Norwich NR4 7UH</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Annals of botany</title>
<idno type="ISSN">0305-7364</idno>
<imprint>
<date when="2006" type="published">2006</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Arabidopsis (metabolism)</term>
<term>Chlorophyta (metabolism)</term>
<term>Plants (metabolism)</term>
<term>Sulfates (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Arabidopsis (métabolisme)</term>
<term>Chlorophyta (métabolisme)</term>
<term>Plantes (métabolisme)</term>
<term>Sulfates (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Sulfates</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Arabidopsis</term>
<term>Chlorophyta</term>
<term>Plants</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Arabidopsis</term>
<term>Chlorophyta</term>
<term>Plantes</term>
<term>Sulfates</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND AND AIMS</b>
</p>
<p>Sulfate assimilation is a pathway used by prokaryotes, fungi and photosynthetic organisms to convert inorganic sulfate to sulfide, which is further incorporated into carbon skeletons of amino acids to form cysteine or homocysteine. The pathway is highly regulated in a demand-driven manner; however, this regulation is not necessarily identical in various plant species. Therefore, our knowledge of the regulation of sulfate assimilation is reviewed here in detail with emphasis on different plant species.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>SCOPE</b>
</p>
<p>Although demand-driven control plays an essential role in regulation of sulfate assimilation in all plants, the molecular mechanisms of the regulation and the effects of various treatments on the individual enzymes and metabolites are often different. This review summarizes (1) the molecular regulation of sulfate assimilation in Arabidopsis thaliana, especially recent data derived from platform technologies and functional genomics, (2) the co-ordination of sulfate, nitrate and carbon assimilations in Lemna minor, (3) the role of sulfate assimilation and glutathione in plant-Rhizobia symbiosis, (4) the cell-specific distribution of sulfate reduction and glutathione synthesis in C(4) plants, (5) the regulation of glutathione biosynthesis in poplar, (6) the knock-out of the adenosine 5'phosphosulfate reductase gene in Physcomitrella patens and identification of 3'-phosphoadenosyl 5'-phosphosulfate reductase in plants, and (7) the sulfur sensing mechanism in green algae.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>As the molecular mechanisms of regulation of the sulfate assimilation pathway are not known, the role of Arabidopsis as a model plant will be further strengthened. However, this review demonstrates that investigations of other plant species will still be necessary to address specific questions of regulation of sulfur nutrition.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">16464881</PMID>
<DateCompleted>
<Year>2006</Year>
<Month>05</Month>
<Day>25</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0305-7364</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>97</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2006</Year>
<Month>Apr</Month>
</PubDate>
</JournalIssue>
<Title>Annals of botany</Title>
<ISOAbbreviation>Ann Bot</ISOAbbreviation>
</Journal>
<ArticleTitle>Regulation of sulfate assimilation in Arabidopsis and beyond.</ArticleTitle>
<Pagination>
<MedlinePgn>479-95</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText Label="BACKGROUND AND AIMS" NlmCategory="OBJECTIVE">Sulfate assimilation is a pathway used by prokaryotes, fungi and photosynthetic organisms to convert inorganic sulfate to sulfide, which is further incorporated into carbon skeletons of amino acids to form cysteine or homocysteine. The pathway is highly regulated in a demand-driven manner; however, this regulation is not necessarily identical in various plant species. Therefore, our knowledge of the regulation of sulfate assimilation is reviewed here in detail with emphasis on different plant species.</AbstractText>
<AbstractText Label="SCOPE" NlmCategory="METHODS">Although demand-driven control plays an essential role in regulation of sulfate assimilation in all plants, the molecular mechanisms of the regulation and the effects of various treatments on the individual enzymes and metabolites are often different. This review summarizes (1) the molecular regulation of sulfate assimilation in Arabidopsis thaliana, especially recent data derived from platform technologies and functional genomics, (2) the co-ordination of sulfate, nitrate and carbon assimilations in Lemna minor, (3) the role of sulfate assimilation and glutathione in plant-Rhizobia symbiosis, (4) the cell-specific distribution of sulfate reduction and glutathione synthesis in C(4) plants, (5) the regulation of glutathione biosynthesis in poplar, (6) the knock-out of the adenosine 5'phosphosulfate reductase gene in Physcomitrella patens and identification of 3'-phosphoadenosyl 5'-phosphosulfate reductase in plants, and (7) the sulfur sensing mechanism in green algae.</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">As the molecular mechanisms of regulation of the sulfate assimilation pathway are not known, the role of Arabidopsis as a model plant will be further strengthened. However, this review demonstrates that investigations of other plant species will still be necessary to address specific questions of regulation of sulfur nutrition.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Kopriva</LastName>
<ForeName>Stanislav</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>John Innes Centre, Norwich NR4 7UH, UK. stanislav.kopriva@bbsrc.ac.uk</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2006</Year>
<Month>02</Month>
<Day>07</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Ann Bot</MedlineTA>
<NlmUniqueID>0372347</NlmUniqueID>
<ISSNLinking>0305-7364</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D013431">Sulfates</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D017360" MajorTopicYN="N">Arabidopsis</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000460" MajorTopicYN="N">Chlorophyta</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010944" MajorTopicYN="N">Plants</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013431" MajorTopicYN="N">Sulfates</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<NumberOfReferences>201</NumberOfReferences>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2006</Year>
<Month>2</Month>
<Day>9</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2006</Year>
<Month>5</Month>
<Day>26</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2006</Year>
<Month>2</Month>
<Day>9</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">16464881</ArticleId>
<ArticleId IdType="pii">mcl006</ArticleId>
<ArticleId IdType="doi">10.1093/aob/mcl006</ArticleId>
<ArticleId IdType="pmc">PMC2803671</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant Physiol. 2002 Dec;130(4):2076-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12481091</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2000 Mar;122(3):737-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10712537</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2004 Apr;55(398):837-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15020643</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1999 Dec;121(4):1169-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10594104</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Amino Acids. 2002;22(3):279-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12083070</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1997 Sep 30;94(20):11102-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9380766</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Apr;131(4):1511-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12692311</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Jul 8;280(27):25590-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15866872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2004 Jun;38(5):779-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15144379</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 May;138(1):433-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15805476</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Experientia. 1977 Aug 15;33(8):1008-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">408177</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2000 May;5(5):193-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10785664</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1996 Nov;112(3):1071-1078</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12226433</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2001 Oct;127(2):543-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11598228</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 1998 Oct;1(5):404-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10066616</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2001 Jan;42(1):85-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11158447</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1999 Apr;18(1):89-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10341446</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1997 Aug;114(4):1443-1451</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12223782</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1976 Mar;57(3):430-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16659497</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FASEB J. 1997 Jun;11(7):517-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9212075</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1999 Jun;11(6):1179-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10368187</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2005 Mar;18(3):254-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15782639</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Dec 14;276(50):46989-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11598126</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1997 Jul;114(3):1031-1037</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12223757</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1997 Dec;179(23):7343-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9393698</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2002 Aug;5(4):325-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12179966</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2004 Oct;16(10):2693-704</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15367713</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1989 Sep;86(18):6838-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16594069</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1984 Nov;76(3):579-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16663886</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Sep;136(1):2443-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15375200</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1996 Nov 12;93(23):13383-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8917600</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2004 Aug;55(404):1809-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15234990</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Physiol Plant Mol Biol. 1999 Jun;50:187-217</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15012208</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 1968 Dec;110(3):589-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4882981</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1959 Jan;34(1):73-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16655178</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2001 Nov;42(11):1265-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11726712</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Feb 9;276(6):3941-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11073956</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2001 Jun;126(2):564-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11402187</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1984 Jul;75(3):873-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16663721</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2004 Aug;55(404):1765-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15258169</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1980 Nov;77(11):6670-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16592917</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Sep 2;100(18):10225-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12934018</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2001 Jul 31;40(30):9040-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11467967</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1979 Oct;64(4):590-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16661015</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1994 Sep 5;351(2):257-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8082776</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 May;138(1):304-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15834012</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Jun 14;277(24):21786-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11940598</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1994 Jul;6(1):105-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7920699</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Apr;134(4):1662-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15047902</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2000 Jul;23(2):171-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10929111</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 1996 Jul 18;1295(2):119-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8695637</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2002 Sep;31(6):729-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12220264</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1996 Nov 12;93(23):13377-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8917599</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 1997;66:233-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9242907</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2001 Aug;126(4):1706-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11500568</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2004 Dec;45(12):1889-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15653809</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1980 Jul 25;209(4455):513-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17831370</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2001 Oct;127(2):665-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11598240</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biol (Stuttg). 2004 Jan-Feb;6(1):2-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15095128</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Physiol Plant Mol Biol. 1997 Jun;48:493-523</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15012272</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1994 Jul;105(3):897-902</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8058839</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2002 May;15(5):411-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12036271</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2005 Jan;187(1):168-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15601700</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2002 Nov;130(3):1406-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12428005</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Jan;137(1):220-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15579666</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1996 May;111(1):147-157</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12226281</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1999 Nov 12;286(5443):1371-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10558994</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1988 Dec;88(4):1407-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16666474</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Apr;131(4):1843-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12692344</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Photosynth Res. 2005 Dec;86(3):491-508</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16307302</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2001 Oct;113(2):158-164</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12060292</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2002 Dec;32(6):879-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12492831</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1999 Oct;20(1):37-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10571863</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Jul 6;101(27):10205-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15199185</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1976 Jun;57(6):881-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16659590</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1984 Apr;74(4):866-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16663524</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2000 Dec;24(5):559-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11123795</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1999 Nov;121(3):879-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10557236</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2000 Jan 14;275(2):930-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10625629</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1999 Jan;119(1):73-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9880348</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Photosynth Res. 2005 Dec;86(3):363-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16307309</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Amino Acids. 2002;22(3):245-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12083068</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 1991 Mar 1;274 ( Pt 2):355-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2006905</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2005 Jan;41(1):15-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15610346</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1998 Dec 4;273(49):32739-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9830017</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2005 May;17(5):1625-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15805486</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1997 Jun 26;387(6636):891-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9202120</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Oct;136(2):3209-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15466229</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1994 May;105(1):103-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8029347</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1979 Aug;64(2):309-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16660955</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1991 Jun;96(2):518-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16668217</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1998 Apr;116(4):1315-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9536048</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2000 Sep;211(4):528-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11030552</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2002 Jul 18;418(6895):317-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12124622</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2005 May;166(2):371-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15819903</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1998 Oct;118(2):471-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9765532</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2003 Feb;33(4):633-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12609038</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2003 Jun;8(6):259-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12818659</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Rev. 1995 Mar;59(1):124-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7708010</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2002;53:477-501</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12221986</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1983 Nov;73(3):560-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16663258</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2000 Apr;22(2):87-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10792824</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2000 Oct;124(2):715-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11027720</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Oct;133(2):499-509</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14555779</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2000 Oct;124(2):857-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11027733</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2004 Nov;16(11):3020-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15494557</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 1988 Oct;175(4):452-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24221925</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2003 Feb;33(4):651-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12609039</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2000 Jul;123(3):825-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10889232</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2002 Dec;43(12):1493-501</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12514246</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1996 May 1;15(9):2150-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8641280</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2004 Aug;55(404):1831-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15286142</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2002 Apr;30(1):95-106</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11967096</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2000 Sep;124(1):461-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10982459</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2004 Aug;55(404):1775-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15208336</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1994 Jan;6(1):53-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12244220</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2001 Jan;56(1):5-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11198818</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2003 Jun 27;113(7):935-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12837250</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Physiol Plant Mol Biol. 2000 Jun;51:141-165</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15012189</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Mikrobiol. 1972;84(1):77-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5053247</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2005 May;42(3):305-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15842617</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Aug 30;277(35):32195-201</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12070175</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 May 16;278(20):17895-900</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12637544</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1991 Sep;97(1):253-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16668378</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1978 Mar;61(3):342-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16660289</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2001 May;26(4):421-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11439129</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2001 May;52(358):971-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11432914</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 1997;203(3):362-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9431683</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Mar;137(3):1082-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15734913</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1999 Jul;40(4):729-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10480396</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1999 Jul;11(7):1277-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10402429</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1998 Sep;10(9):1539-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9724699</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2003 Jul;54(388):1701-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12754263</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2001 Apr;52(356):577-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11373306</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biol (Stuttg). 2004 Jul;6(4):408-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15248123</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2000 Mar;122(3):667-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10712529</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Dec;136(4):4198-204</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15531709</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2002 Feb;29(4):465-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11846879</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Aug 23;277(34):30629-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12063244</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2002 Feb;29(4):475-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11846880</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1999 Feb;39(3):527-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10092180</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 1990 Mar;180(4):603-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24202107</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1971 Jun 10;246(11):3474-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4931306</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2002 Jun;7(6):263-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12049923</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1995 Sep 26;92(20):9373-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7568135</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Jun;132(2):597-605</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12805590</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1988 Jan;106(1):29-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3339089</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Royaume-Uni</li>
</country>
</list>
<tree>
<country name="Royaume-Uni">
<noRegion>
<name sortKey="Kopriva, Stanislav" sort="Kopriva, Stanislav" uniqKey="Kopriva S" first="Stanislav" last="Kopriva">Stanislav Kopriva</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003D33 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 003D33 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:16464881
   |texte=   Regulation of sulfate assimilation in Arabidopsis and beyond.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:16464881" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020