Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Oxidation of ingested phenolics in the tree-feeding caterpillar Orgyia leucostigma depends on foliar chemical composition.

Identifieur interne : 003851 ( Main/Exploration ); précédent : 003850; suivant : 003852

Oxidation of ingested phenolics in the tree-feeding caterpillar Orgyia leucostigma depends on foliar chemical composition.

Auteurs : Raymond Barbehenn [États-Unis] ; Quentin Weir ; Juha-Pekka Salminen

Source :

RBID : pubmed:18473142

Descripteurs français

English descriptors

Abstract

Tannins are believed to function as antiherbivore defenses, in part, by acting as prooxidants. However, at the high pH found in the midguts of caterpillars, the oxidative activities of different types of tannins vary tremendously: ellagitannins > galloyl glucoses > condensed tannins. Ingested ascorbate is utilized by caterpillars to minimize phenolic oxidation in the midgut. Thus, leaves that contain higher levels of reactive tannins and lower levels of ascorbate were hypothesized to produce higher levels of phenolic oxidation in caterpillars. We tested this hypothesis with eight species of deciduous trees by measuring their foliar phenolic and ascorbate compositions and measuring the semiquinone radical (oxidized phenolic) levels formed in caterpillars that ingested each species. When the generalist caterpillars of Orgyia leucostigma (Lymantriidae) fed on the leaves of tree species in which condensed tannins were predominant (i.e., Populus tremuloides, P. deltoides, and Ostrya virginiana), semiquinone radical levels were low or entirely absent from the midgut contents. In contrast, species that contained higher levels of ellagitannins (or galloyl rhamnoses; i.e., Quercus alba, Acer rubrum, and A. saccharum) produced the highest levels of semiquinone radicals in O. leucostigma. Low molecular weight phenolics contributed relatively little to the overall oxidative activities of tree leaves compared with reactive tannins. Ascorbate levels were lowest in the species that also contained the highest levels of oxidatively active tannins, potentially exacerbating phenolic oxidation in the gut lumen. We conclude that the tannin compositions of tree leaves largely determine the effectiveness of foliar phenolics as oxidative defenses against caterpillars such as O. leucostigma.

DOI: 10.1007/s10886-008-9478-3
PubMed: 18473142


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Oxidation of ingested phenolics in the tree-feeding caterpillar Orgyia leucostigma depends on foliar chemical composition.</title>
<author>
<name sortKey="Barbehenn, Raymond" sort="Barbehenn, Raymond" uniqKey="Barbehenn R" first="Raymond" last="Barbehenn">Raymond Barbehenn</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular, University of Michigan, Ann Arbor, MI 48109-1048, USA. rvb@umich.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Molecular, University of Michigan, Ann Arbor, MI 48109-1048</wicri:regionArea>
<placeName>
<region type="state">Michigan</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Weir, Quentin" sort="Weir, Quentin" uniqKey="Weir Q" first="Quentin" last="Weir">Quentin Weir</name>
</author>
<author>
<name sortKey="Salminen, Juha Pekka" sort="Salminen, Juha Pekka" uniqKey="Salminen J" first="Juha-Pekka" last="Salminen">Juha-Pekka Salminen</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2008">2008</date>
<idno type="RBID">pubmed:18473142</idno>
<idno type="pmid">18473142</idno>
<idno type="doi">10.1007/s10886-008-9478-3</idno>
<idno type="wicri:Area/Main/Corpus">003896</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">003896</idno>
<idno type="wicri:Area/Main/Curation">003896</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">003896</idno>
<idno type="wicri:Area/Main/Exploration">003896</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Oxidation of ingested phenolics in the tree-feeding caterpillar Orgyia leucostigma depends on foliar chemical composition.</title>
<author>
<name sortKey="Barbehenn, Raymond" sort="Barbehenn, Raymond" uniqKey="Barbehenn R" first="Raymond" last="Barbehenn">Raymond Barbehenn</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Molecular, University of Michigan, Ann Arbor, MI 48109-1048, USA. rvb@umich.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Molecular, University of Michigan, Ann Arbor, MI 48109-1048</wicri:regionArea>
<placeName>
<region type="state">Michigan</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Weir, Quentin" sort="Weir, Quentin" uniqKey="Weir Q" first="Quentin" last="Weir">Quentin Weir</name>
</author>
<author>
<name sortKey="Salminen, Juha Pekka" sort="Salminen, Juha Pekka" uniqKey="Salminen J" first="Juha-Pekka" last="Salminen">Juha-Pekka Salminen</name>
</author>
</analytic>
<series>
<title level="j">Journal of chemical ecology</title>
<idno type="ISSN">0098-0331</idno>
<imprint>
<date when="2008" type="published">2008</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Ascorbic Acid (analogs & derivatives)</term>
<term>Ascorbic Acid (metabolism)</term>
<term>Eating (MeSH)</term>
<term>Free Radicals (chemistry)</term>
<term>Free Radicals (metabolism)</term>
<term>Lepidoptera (metabolism)</term>
<term>Lepidoptera (physiology)</term>
<term>Molecular Weight (MeSH)</term>
<term>Oxidation-Reduction (MeSH)</term>
<term>Phenols (chemistry)</term>
<term>Phenols (metabolism)</term>
<term>Plant Leaves (chemistry)</term>
<term>Trees (chemistry)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Acide ascorbique (analogues et dérivés)</term>
<term>Acide ascorbique (métabolisme)</term>
<term>Animaux (MeSH)</term>
<term>Arbres (composition chimique)</term>
<term>Consommation alimentaire (MeSH)</term>
<term>Feuilles de plante (composition chimique)</term>
<term>Lepidoptera (métabolisme)</term>
<term>Lepidoptera (physiologie)</term>
<term>Masse moléculaire (MeSH)</term>
<term>Oxydoréduction (MeSH)</term>
<term>Phénols (composition chimique)</term>
<term>Phénols (métabolisme)</term>
<term>Radicaux libres (composition chimique)</term>
<term>Radicaux libres (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analogs & derivatives" xml:lang="en">
<term>Ascorbic Acid</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Free Radicals</term>
<term>Phenols</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Ascorbic Acid</term>
<term>Free Radicals</term>
<term>Phenols</term>
</keywords>
<keywords scheme="MESH" qualifier="analogues et dérivés" xml:lang="fr">
<term>Acide ascorbique</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Plant Leaves</term>
<term>Trees</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Arbres</term>
<term>Feuilles de plante</term>
<term>Phénols</term>
<term>Radicaux libres</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Lepidoptera</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Acide ascorbique</term>
<term>Lepidoptera</term>
<term>Phénols</term>
<term>Radicaux libres</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Lepidoptera</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Lepidoptera</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Eating</term>
<term>Molecular Weight</term>
<term>Oxidation-Reduction</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Consommation alimentaire</term>
<term>Masse moléculaire</term>
<term>Oxydoréduction</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Tannins are believed to function as antiherbivore defenses, in part, by acting as prooxidants. However, at the high pH found in the midguts of caterpillars, the oxidative activities of different types of tannins vary tremendously: ellagitannins > galloyl glucoses > condensed tannins. Ingested ascorbate is utilized by caterpillars to minimize phenolic oxidation in the midgut. Thus, leaves that contain higher levels of reactive tannins and lower levels of ascorbate were hypothesized to produce higher levels of phenolic oxidation in caterpillars. We tested this hypothesis with eight species of deciduous trees by measuring their foliar phenolic and ascorbate compositions and measuring the semiquinone radical (oxidized phenolic) levels formed in caterpillars that ingested each species. When the generalist caterpillars of Orgyia leucostigma (Lymantriidae) fed on the leaves of tree species in which condensed tannins were predominant (i.e., Populus tremuloides, P. deltoides, and Ostrya virginiana), semiquinone radical levels were low or entirely absent from the midgut contents. In contrast, species that contained higher levels of ellagitannins (or galloyl rhamnoses; i.e., Quercus alba, Acer rubrum, and A. saccharum) produced the highest levels of semiquinone radicals in O. leucostigma. Low molecular weight phenolics contributed relatively little to the overall oxidative activities of tree leaves compared with reactive tannins. Ascorbate levels were lowest in the species that also contained the highest levels of oxidatively active tannins, potentially exacerbating phenolic oxidation in the gut lumen. We conclude that the tannin compositions of tree leaves largely determine the effectiveness of foliar phenolics as oxidative defenses against caterpillars such as O. leucostigma.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">18473142</PMID>
<DateCompleted>
<Year>2008</Year>
<Month>09</Month>
<Day>18</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0098-0331</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>34</Volume>
<Issue>6</Issue>
<PubDate>
<Year>2008</Year>
<Month>Jun</Month>
</PubDate>
</JournalIssue>
<Title>Journal of chemical ecology</Title>
<ISOAbbreviation>J Chem Ecol</ISOAbbreviation>
</Journal>
<ArticleTitle>Oxidation of ingested phenolics in the tree-feeding caterpillar Orgyia leucostigma depends on foliar chemical composition.</ArticleTitle>
<Pagination>
<MedlinePgn>748-56</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s10886-008-9478-3</ELocationID>
<Abstract>
<AbstractText>Tannins are believed to function as antiherbivore defenses, in part, by acting as prooxidants. However, at the high pH found in the midguts of caterpillars, the oxidative activities of different types of tannins vary tremendously: ellagitannins > galloyl glucoses > condensed tannins. Ingested ascorbate is utilized by caterpillars to minimize phenolic oxidation in the midgut. Thus, leaves that contain higher levels of reactive tannins and lower levels of ascorbate were hypothesized to produce higher levels of phenolic oxidation in caterpillars. We tested this hypothesis with eight species of deciduous trees by measuring their foliar phenolic and ascorbate compositions and measuring the semiquinone radical (oxidized phenolic) levels formed in caterpillars that ingested each species. When the generalist caterpillars of Orgyia leucostigma (Lymantriidae) fed on the leaves of tree species in which condensed tannins were predominant (i.e., Populus tremuloides, P. deltoides, and Ostrya virginiana), semiquinone radical levels were low or entirely absent from the midgut contents. In contrast, species that contained higher levels of ellagitannins (or galloyl rhamnoses; i.e., Quercus alba, Acer rubrum, and A. saccharum) produced the highest levels of semiquinone radicals in O. leucostigma. Low molecular weight phenolics contributed relatively little to the overall oxidative activities of tree leaves compared with reactive tannins. Ascorbate levels were lowest in the species that also contained the highest levels of oxidatively active tannins, potentially exacerbating phenolic oxidation in the gut lumen. We conclude that the tannin compositions of tree leaves largely determine the effectiveness of foliar phenolics as oxidative defenses against caterpillars such as O. leucostigma.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Barbehenn</LastName>
<ForeName>Raymond</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Department of Molecular, University of Michigan, Ann Arbor, MI 48109-1048, USA. rvb@umich.edu</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Weir</LastName>
<ForeName>Quentin</ForeName>
<Initials>Q</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Salminen</LastName>
<ForeName>Juha-Pekka</ForeName>
<Initials>JP</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2008</Year>
<Month>05</Month>
<Day>13</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Chem Ecol</MedlineTA>
<NlmUniqueID>7505563</NlmUniqueID>
<ISSNLinking>0098-0331</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005609">Free Radicals</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010636">Phenols</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>PQ6CK8PD0R</RegistryNumber>
<NameOfSubstance UI="D001205">Ascorbic Acid</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001205" MajorTopicYN="N">Ascorbic Acid</DescriptorName>
<QualifierName UI="Q000031" MajorTopicYN="N">analogs & derivatives</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004435" MajorTopicYN="Y">Eating</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005609" MajorTopicYN="N">Free Radicals</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007915" MajorTopicYN="N">Lepidoptera</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008970" MajorTopicYN="N">Molecular Weight</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="N">Oxidation-Reduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010636" MajorTopicYN="N">Phenols</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014197" MajorTopicYN="N">Trees</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2007</Year>
<Month>12</Month>
<Day>04</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2008</Year>
<Month>04</Month>
<Day>15</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2008</Year>
<Month>04</Month>
<Day>04</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2008</Year>
<Month>5</Month>
<Day>14</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2008</Year>
<Month>9</Month>
<Day>19</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2008</Year>
<Month>5</Month>
<Day>14</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">18473142</ArticleId>
<ArticleId IdType="doi">10.1007/s10886-008-9478-3</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Chem Ecol. 2006 Oct;32(10):2253-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17019621</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Insect Biochem Physiol. 2001 Jun;47(2):86-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11376455</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Comp Biochem Physiol C Pharmacol Toxicol Endocrinol. 1998 Oct;120(3):481-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9827067</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2001 Aug;27(8):1595-615</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11521399</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2001 Aug;112(4):552-558</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11473716</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 1990 Dec;283(2):530-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2148866</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 1989 Sep;15(9):2335-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24272421</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1995 Jul;103(1):79-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28306948</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chromatogr A. 1999 Dec 24;864(2):283-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10669296</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Insect Biochem Mol Biol. 2003 Jan;33(1):125-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12459207</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2003 May;29(5):1099-116</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12857024</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Insect Physiol. 2001 Apr;47(4-5):349-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11166299</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1988 Mar;75(2):185-189</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28310832</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Biol Interact. 1988;65(2):157-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2835188</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 1987 Mar;13(3):605-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24301898</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochem Anal. 2001 Mar-Apr;12(2):128-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11705241</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2005 May;31(5):969-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16124227</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2001 Dec;27(12):2579-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11789960</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2006 Oct;32(10):2235-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17031601</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2003 Mar;29(3):683-702</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12757328</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 1995 Oct;21(10):1511-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24233680</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2001 Dec;27(12):2517-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11789956</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Michigan</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Salminen, Juha Pekka" sort="Salminen, Juha Pekka" uniqKey="Salminen J" first="Juha-Pekka" last="Salminen">Juha-Pekka Salminen</name>
<name sortKey="Weir, Quentin" sort="Weir, Quentin" uniqKey="Weir Q" first="Quentin" last="Weir">Quentin Weir</name>
</noCountry>
<country name="États-Unis">
<region name="Michigan">
<name sortKey="Barbehenn, Raymond" sort="Barbehenn, Raymond" uniqKey="Barbehenn R" first="Raymond" last="Barbehenn">Raymond Barbehenn</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003851 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 003851 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:18473142
   |texte=   Oxidation of ingested phenolics in the tree-feeding caterpillar Orgyia leucostigma depends on foliar chemical composition.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:18473142" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020