Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Deep sequencing of Brachypodium small RNAs at the global genome level identifies microRNAs involved in cold stress response.

Identifieur interne : 003669 ( Main/Exploration ); précédent : 003668; suivant : 003670

Deep sequencing of Brachypodium small RNAs at the global genome level identifies microRNAs involved in cold stress response.

Auteurs : Jingyu Zhang [République populaire de Chine] ; Yunyuan Xu ; Qing Huan ; Kang Chong

Source :

RBID : pubmed:19772667

Descripteurs français

English descriptors

Abstract

BACKGROUND

MicroRNAs (miRNAs) are endogenous small RNAs having large-scale regulatory effects on plant development and stress responses. Extensive studies of miRNAs have only been performed in a few model plants. Although miRNAs are proved to be involved in plant cold stress responses, little is known for winter-habit monocots. Brachypodium distachyon, with close evolutionary relationship to cool-season cereals, has recently emerged as a novel model plant. There are few reports of Brachypodium miRNAs.

RESULTS

High-throughput sequencing and whole-genome-wide data mining led to the identification of 27 conserved miRNAs, as well as 129 predicted miRNAs in Brachypodium. For multiple-member conserved miRNA families, their sizes in Brachypodium were much smaller than those in rice and Populus. The genome organization of miR395 family in Brachypodium was quite different from that in rice. The expression of 3 conserved miRNAs and 25 predicted miRNAs showed significant changes in response to cold stress. Among these miRNAs, some were cold-induced and some were cold-suppressed, but all the conserved miRNAs were up-regulated under cold stress condition.

CONCLUSION

Our results suggest that Brachypodium miRNAs are composed of a set of conserved miRNAs and a large proportion of non-conserved miRNAs with low expression levels. Both kinds of miRNAs were involved in cold stress response, but all the conserved miRNAs were up-regulated, implying an important role for cold-induced miRNAs. The different size and genome organization of miRNA families in Brachypodium and rice suggest that the frequency of duplication events or the selection pressure on duplicated miRNAs are different between these two closely related plant species.


DOI: 10.1186/1471-2164-10-449
PubMed: 19772667
PubMed Central: PMC2759970


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Deep sequencing of Brachypodium small RNAs at the global genome level identifies microRNAs involved in cold stress response.</title>
<author>
<name sortKey="Zhang, Jingyu" sort="Zhang, Jingyu" uniqKey="Zhang J" first="Jingyu" last="Zhang">Jingyu Zhang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Chinese Academy of Sciences, and National Centre for Plant Gene Research, Beijing 100093, PR China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Chinese Academy of Sciences, and National Centre for Plant Gene Research, Beijing 100093</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Xu, Yunyuan" sort="Xu, Yunyuan" uniqKey="Xu Y" first="Yunyuan" last="Xu">Yunyuan Xu</name>
</author>
<author>
<name sortKey="Huan, Qing" sort="Huan, Qing" uniqKey="Huan Q" first="Qing" last="Huan">Qing Huan</name>
</author>
<author>
<name sortKey="Chong, Kang" sort="Chong, Kang" uniqKey="Chong K" first="Kang" last="Chong">Kang Chong</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2009">2009</date>
<idno type="RBID">pubmed:19772667</idno>
<idno type="pmid">19772667</idno>
<idno type="doi">10.1186/1471-2164-10-449</idno>
<idno type="pmc">PMC2759970</idno>
<idno type="wicri:Area/Main/Corpus">003455</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">003455</idno>
<idno type="wicri:Area/Main/Curation">003455</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">003455</idno>
<idno type="wicri:Area/Main/Exploration">003455</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Deep sequencing of Brachypodium small RNAs at the global genome level identifies microRNAs involved in cold stress response.</title>
<author>
<name sortKey="Zhang, Jingyu" sort="Zhang, Jingyu" uniqKey="Zhang J" first="Jingyu" last="Zhang">Jingyu Zhang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Chinese Academy of Sciences, and National Centre for Plant Gene Research, Beijing 100093, PR China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Chinese Academy of Sciences, and National Centre for Plant Gene Research, Beijing 100093</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Xu, Yunyuan" sort="Xu, Yunyuan" uniqKey="Xu Y" first="Yunyuan" last="Xu">Yunyuan Xu</name>
</author>
<author>
<name sortKey="Huan, Qing" sort="Huan, Qing" uniqKey="Huan Q" first="Qing" last="Huan">Qing Huan</name>
</author>
<author>
<name sortKey="Chong, Kang" sort="Chong, Kang" uniqKey="Chong K" first="Kang" last="Chong">Kang Chong</name>
</author>
</analytic>
<series>
<title level="j">BMC genomics</title>
<idno type="eISSN">1471-2164</idno>
<imprint>
<date when="2009" type="published">2009</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Cold Temperature (MeSH)</term>
<term>Computational Biology (MeSH)</term>
<term>Conserved Sequence (MeSH)</term>
<term>Gene Expression Profiling (MeSH)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Genome, Plant (MeSH)</term>
<term>MicroRNAs (genetics)</term>
<term>Oryza (genetics)</term>
<term>Poaceae (genetics)</term>
<term>Sequence Analysis, RNA (MeSH)</term>
<term>Species Specificity (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Analyse de profil d'expression de gènes (MeSH)</term>
<term>Analyse de séquence d'ARN (MeSH)</term>
<term>Basse température (MeSH)</term>
<term>Biologie informatique (MeSH)</term>
<term>Génome végétal (MeSH)</term>
<term>Oryza (génétique)</term>
<term>Poaceae (génétique)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Spécificité d'espèce (MeSH)</term>
<term>Séquence conservée (MeSH)</term>
<term>microARN (génétique)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>MicroRNAs</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Oryza</term>
<term>Poaceae</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Oryza</term>
<term>Poaceae</term>
<term>microARN</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Cold Temperature</term>
<term>Computational Biology</term>
<term>Conserved Sequence</term>
<term>Gene Expression Profiling</term>
<term>Gene Expression Regulation, Plant</term>
<term>Genome, Plant</term>
<term>Sequence Analysis, RNA</term>
<term>Species Specificity</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Analyse de profil d'expression de gènes</term>
<term>Analyse de séquence d'ARN</term>
<term>Basse température</term>
<term>Biologie informatique</term>
<term>Génome végétal</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Spécificité d'espèce</term>
<term>Séquence conservée</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>MicroRNAs (miRNAs) are endogenous small RNAs having large-scale regulatory effects on plant development and stress responses. Extensive studies of miRNAs have only been performed in a few model plants. Although miRNAs are proved to be involved in plant cold stress responses, little is known for winter-habit monocots. Brachypodium distachyon, with close evolutionary relationship to cool-season cereals, has recently emerged as a novel model plant. There are few reports of Brachypodium miRNAs.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>High-throughput sequencing and whole-genome-wide data mining led to the identification of 27 conserved miRNAs, as well as 129 predicted miRNAs in Brachypodium. For multiple-member conserved miRNA families, their sizes in Brachypodium were much smaller than those in rice and Populus. The genome organization of miR395 family in Brachypodium was quite different from that in rice. The expression of 3 conserved miRNAs and 25 predicted miRNAs showed significant changes in response to cold stress. Among these miRNAs, some were cold-induced and some were cold-suppressed, but all the conserved miRNAs were up-regulated under cold stress condition.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSION</b>
</p>
<p>Our results suggest that Brachypodium miRNAs are composed of a set of conserved miRNAs and a large proportion of non-conserved miRNAs with low expression levels. Both kinds of miRNAs were involved in cold stress response, but all the conserved miRNAs were up-regulated, implying an important role for cold-induced miRNAs. The different size and genome organization of miRNA families in Brachypodium and rice suggest that the frequency of duplication events or the selection pressure on duplicated miRNAs are different between these two closely related plant species.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">19772667</PMID>
<DateCompleted>
<Year>2009</Year>
<Month>10</Month>
<Day>30</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1471-2164</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>10</Volume>
<PubDate>
<Year>2009</Year>
<Month>Sep</Month>
<Day>23</Day>
</PubDate>
</JournalIssue>
<Title>BMC genomics</Title>
<ISOAbbreviation>BMC Genomics</ISOAbbreviation>
</Journal>
<ArticleTitle>Deep sequencing of Brachypodium small RNAs at the global genome level identifies microRNAs involved in cold stress response.</ArticleTitle>
<Pagination>
<MedlinePgn>449</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/1471-2164-10-449</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">MicroRNAs (miRNAs) are endogenous small RNAs having large-scale regulatory effects on plant development and stress responses. Extensive studies of miRNAs have only been performed in a few model plants. Although miRNAs are proved to be involved in plant cold stress responses, little is known for winter-habit monocots. Brachypodium distachyon, with close evolutionary relationship to cool-season cereals, has recently emerged as a novel model plant. There are few reports of Brachypodium miRNAs.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">High-throughput sequencing and whole-genome-wide data mining led to the identification of 27 conserved miRNAs, as well as 129 predicted miRNAs in Brachypodium. For multiple-member conserved miRNA families, their sizes in Brachypodium were much smaller than those in rice and Populus. The genome organization of miR395 family in Brachypodium was quite different from that in rice. The expression of 3 conserved miRNAs and 25 predicted miRNAs showed significant changes in response to cold stress. Among these miRNAs, some were cold-induced and some were cold-suppressed, but all the conserved miRNAs were up-regulated under cold stress condition.</AbstractText>
<AbstractText Label="CONCLUSION" NlmCategory="CONCLUSIONS">Our results suggest that Brachypodium miRNAs are composed of a set of conserved miRNAs and a large proportion of non-conserved miRNAs with low expression levels. Both kinds of miRNAs were involved in cold stress response, but all the conserved miRNAs were up-regulated, implying an important role for cold-induced miRNAs. The different size and genome organization of miRNA families in Brachypodium and rice suggest that the frequency of duplication events or the selection pressure on duplicated miRNAs are different between these two closely related plant species.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Jingyu</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Chinese Academy of Sciences, and National Centre for Plant Gene Research, Beijing 100093, PR China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Xu</LastName>
<ForeName>Yunyuan</ForeName>
<Initials>Y</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Huan</LastName>
<ForeName>Qing</ForeName>
<Initials>Q</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Chong</LastName>
<ForeName>Kang</ForeName>
<Initials>K</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2009</Year>
<Month>09</Month>
<Day>23</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>BMC Genomics</MedlineTA>
<NlmUniqueID>100965258</NlmUniqueID>
<ISSNLinking>1471-2164</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D035683">MicroRNAs</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D003080" MajorTopicYN="Y">Cold Temperature</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019295" MajorTopicYN="N">Computational Biology</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017124" MajorTopicYN="N">Conserved Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020869" MajorTopicYN="N">Gene Expression Profiling</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018745" MajorTopicYN="Y">Genome, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D035683" MajorTopicYN="N">MicroRNAs</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012275" MajorTopicYN="N">Oryza</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006109" MajorTopicYN="N">Poaceae</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017423" MajorTopicYN="N">Sequence Analysis, RNA</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013045" MajorTopicYN="N">Species Specificity</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2009</Year>
<Month>03</Month>
<Day>03</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2009</Year>
<Month>09</Month>
<Day>23</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2009</Year>
<Month>9</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2009</Year>
<Month>9</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2009</Year>
<Month>10</Month>
<Day>31</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">19772667</ArticleId>
<ArticleId IdType="pii">1471-2164-10-449</ArticleId>
<ArticleId IdType="doi">10.1186/1471-2164-10-449</ArticleId>
<ArticleId IdType="pmc">PMC2759970</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nat Genet. 2006 Jun;38 Suppl:S31-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16736022</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods. 2008 Jan;44(1):3-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18158127</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2007;8(6):R96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17543110</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Top Microbiol Immunol. 2008;320:117-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18268842</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biotechnol. 2008 Mar;38(3):257-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17999201</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2008 Mar;66(5):491-502</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18180880</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2008 Mar 1;24(5):713-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18227114</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2007;8:481</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18166134</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2008 Apr;18(4):610-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18285502</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2008;8:25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18312648</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2008 Apr;13(4):172-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18343709</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>RNA. 2008 May;14(5):836-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18356539</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2008 May 30;320(5880):1185-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18483398</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2008;3(6):1077-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18536652</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2008 Jul;13(7):368-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18501663</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2008 Jul;55(1):131-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18363789</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2008 Sep;18(9):1456-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18687877</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2008 Oct;18(10):1602-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18653800</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genomics. 2008 Nov;92(5):255-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18703132</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2008 Nov;1779(11):780-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18471443</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2008 Dec;20(12):3186-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19074682</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2000 Dec 14;408(6814):796-815</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11130711</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2002 Jul 1;16(13):1616-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12101121</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2002 Jul;14(7):1605-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12119378</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2002 Aug 23;110(4):513-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12202040</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2002 Sep 3;12(17):1484-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12225663</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>RNA. 2003 Mar;9(3):277-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12592000</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2006;171(3):451-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16866953</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2006;342:129-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16957372</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2006 Sep 18;580(21):5111-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16959252</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Sep 15;313(5793):1596-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16973872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2006 Oct;16(10):1276-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16954541</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2006 Dec 15;127(6):1193-207</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17174894</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2006 Dec 15;20(24):3407-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17182867</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2007 Jan;35(Database issue):D829-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17169981</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2007;2(2):e219</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17299599</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2007 Feb;49(4):683-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17217458</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 Jan;19(1):46-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17209126</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Res. 2007 Mar;17(3):212-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17130846</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2007 May;50(4):649-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17425722</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2007 Jul;12(7):301-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17573231</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2007 Aug 7;581(20):3848-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17659282</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2007 Sep;51(6):991-1003</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17635767</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 Sep 18;425(6955):257-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12931144</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2003 Nov;15(11):2730-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14555699</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2004 Jan 23;116(2):281-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14744438</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2004;32(5):1688-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15020705</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2004 Mar 26;303(5666):2022-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12893888</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2004 Aug;16(8):2001-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15258262</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1990 Oct 5;215(3):403-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2231712</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1993 Dec 3;75(5):843-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8252621</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1997 Sep 1;25(17):3389-402</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9254694</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Genet. 1997 Dec;13(12):497-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9433140</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2004 Nov 22;20(17):2911-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15217813</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2004 Dec;36(12):1282-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15565108</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2005 Feb 22;15(4):303-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15723790</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2005 May;17(5):1397-411</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15805478</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2005 Jul;43(1):47-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15960615</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2005 Aug;17(8):2186-203</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15994906</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Development. 2005 Aug;132(16):3657-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16033795</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2005 Aug 11;436(7052):793-800</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16100779</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2005 Sep;43(6):837-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16146523</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Mol Life Sci. 2006 Jan;63(2):246-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16395542</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2006 Apr;16(4):510-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16520461</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2006;57:19-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16669754</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
<settlement>
<li>Pékin</li>
</settlement>
</list>
<tree>
<noCountry>
<name sortKey="Chong, Kang" sort="Chong, Kang" uniqKey="Chong K" first="Kang" last="Chong">Kang Chong</name>
<name sortKey="Huan, Qing" sort="Huan, Qing" uniqKey="Huan Q" first="Qing" last="Huan">Qing Huan</name>
<name sortKey="Xu, Yunyuan" sort="Xu, Yunyuan" uniqKey="Xu Y" first="Yunyuan" last="Xu">Yunyuan Xu</name>
</noCountry>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Zhang, Jingyu" sort="Zhang, Jingyu" uniqKey="Zhang J" first="Jingyu" last="Zhang">Jingyu Zhang</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003669 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 003669 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:19772667
   |texte=   Deep sequencing of Brachypodium small RNAs at the global genome level identifies microRNAs involved in cold stress response.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:19772667" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020