Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Impact of simulated herbivory on water relations of aspen (Populus tremuloides) seedlings: the role of new tissue in the hydraulic conductivity recovery cycle.

Identifieur interne : 003591 ( Main/Exploration ); précédent : 003590; suivant : 003592

Impact of simulated herbivory on water relations of aspen (Populus tremuloides) seedlings: the role of new tissue in the hydraulic conductivity recovery cycle.

Auteurs : David A. Gálvez [Canada] ; M T Tyree

Source :

RBID : pubmed:19603186

Descripteurs français

English descriptors

Abstract

Physiological mechanisms behind plant-herbivore interactions are commonly approached as input-output systems where the role of plant physiology is viewed as a black box. Studies evaluating impacts of defoliation on plant physiology have mostly focused on changes in photosynthesis while the overall impact on plant water relations is largely unknown. Stem hydraulic conductivity (k(h)), stem specific conductivity (k(s)), percent loss of hydraulic conductivity (PLC), CO(2) assimilation (A) and stomatal conductance (g(s)) were measured on well-irrigated 1-month-old Populus tremuloides (Michx.) defoliated and control seedlings until complete refoliation. PLC values of defoliated seedlings gradually increased during the refoliation process despite them being kept well irrigated. k(s) of defoliated seedlings gradually decreased during refoliation. PLC and k(s) values of control seedlings remained constant during refoliation. k(s) of new stems, leaf specific conductivity and A of leaves grown from new stems in defoliated and control seedlings were not significantly different, but g(s) was higher in defoliated than in control seedlings. The gradual increase of PLC and decrease of k(s) values in old stems after defoliation was unexpected under well-irrigated conditions, but appeared to have little impact on new stems formed after defoliation. The gradual loss of conductivity measured during the refoliation process under well-irrigated conditions suggests that young seedlings of P. tremuloides may be more susceptible to cavitation after herbivore damage under drought conditions.

DOI: 10.1007/s00442-009-1416-8
PubMed: 19603186


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Impact of simulated herbivory on water relations of aspen (Populus tremuloides) seedlings: the role of new tissue in the hydraulic conductivity recovery cycle.</title>
<author>
<name sortKey="Galvez, David A" sort="Galvez, David A" uniqKey="Galvez D" first="David A" last="Gálvez">David A. Gálvez</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Renewable Resources, University of Alberta, Edmonton, AB T6G2E3, Canada. david.galvez@ualberta.ca</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Renewable Resources, University of Alberta, Edmonton, AB T6G2E3</wicri:regionArea>
<wicri:noRegion>AB T6G2E3</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Tyree, M T" sort="Tyree, M T" uniqKey="Tyree M" first="M T" last="Tyree">M T Tyree</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2009">2009</date>
<idno type="RBID">pubmed:19603186</idno>
<idno type="pmid">19603186</idno>
<idno type="doi">10.1007/s00442-009-1416-8</idno>
<idno type="wicri:Area/Main/Corpus">003513</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">003513</idno>
<idno type="wicri:Area/Main/Curation">003513</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">003513</idno>
<idno type="wicri:Area/Main/Exploration">003513</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Impact of simulated herbivory on water relations of aspen (Populus tremuloides) seedlings: the role of new tissue in the hydraulic conductivity recovery cycle.</title>
<author>
<name sortKey="Galvez, David A" sort="Galvez, David A" uniqKey="Galvez D" first="David A" last="Gálvez">David A. Gálvez</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Renewable Resources, University of Alberta, Edmonton, AB T6G2E3, Canada. david.galvez@ualberta.ca</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Renewable Resources, University of Alberta, Edmonton, AB T6G2E3</wicri:regionArea>
<wicri:noRegion>AB T6G2E3</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Tyree, M T" sort="Tyree, M T" uniqKey="Tyree M" first="M T" last="Tyree">M T Tyree</name>
</author>
</analytic>
<series>
<title level="j">Oecologia</title>
<idno type="eISSN">1432-1939</idno>
<imprint>
<date when="2009" type="published">2009</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Carbon Dioxide (metabolism)</term>
<term>Droughts (MeSH)</term>
<term>Hydrostatic Pressure (MeSH)</term>
<term>Plant Leaves (growth & development)</term>
<term>Plant Leaves (metabolism)</term>
<term>Plant Stems (growth & development)</term>
<term>Plant Stems (metabolism)</term>
<term>Plant Stomata (growth & development)</term>
<term>Plant Stomata (metabolism)</term>
<term>Populus (growth & development)</term>
<term>Populus (metabolism)</term>
<term>Seedlings (growth & development)</term>
<term>Seedlings (metabolism)</term>
<term>Time Factors (MeSH)</term>
<term>Water (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Dioxyde de carbone (métabolisme)</term>
<term>Eau (métabolisme)</term>
<term>Facteurs temps (MeSH)</term>
<term>Feuilles de plante (croissance et développement)</term>
<term>Feuilles de plante (métabolisme)</term>
<term>Plant (croissance et développement)</term>
<term>Plant (métabolisme)</term>
<term>Populus (croissance et développement)</term>
<term>Populus (métabolisme)</term>
<term>Pression hydrostatique (MeSH)</term>
<term>Stomates de plante (croissance et développement)</term>
<term>Stomates de plante (métabolisme)</term>
<term>Sécheresses (MeSH)</term>
<term>Tiges de plante (croissance et développement)</term>
<term>Tiges de plante (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Carbon Dioxide</term>
<term>Water</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Feuilles de plante</term>
<term>Plant</term>
<term>Populus</term>
<term>Stomates de plante</term>
<term>Tiges de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Plant Leaves</term>
<term>Plant Stems</term>
<term>Plant Stomata</term>
<term>Populus</term>
<term>Seedlings</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Plant Leaves</term>
<term>Plant Stems</term>
<term>Plant Stomata</term>
<term>Populus</term>
<term>Seedlings</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Dioxyde de carbone</term>
<term>Eau</term>
<term>Feuilles de plante</term>
<term>Plant</term>
<term>Populus</term>
<term>Stomates de plante</term>
<term>Tiges de plante</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Droughts</term>
<term>Hydrostatic Pressure</term>
<term>Time Factors</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Facteurs temps</term>
<term>Pression hydrostatique</term>
<term>Sécheresses</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Physiological mechanisms behind plant-herbivore interactions are commonly approached as input-output systems where the role of plant physiology is viewed as a black box. Studies evaluating impacts of defoliation on plant physiology have mostly focused on changes in photosynthesis while the overall impact on plant water relations is largely unknown. Stem hydraulic conductivity (k(h)), stem specific conductivity (k(s)), percent loss of hydraulic conductivity (PLC), CO(2) assimilation (A) and stomatal conductance (g(s)) were measured on well-irrigated 1-month-old Populus tremuloides (Michx.) defoliated and control seedlings until complete refoliation. PLC values of defoliated seedlings gradually increased during the refoliation process despite them being kept well irrigated. k(s) of defoliated seedlings gradually decreased during refoliation. PLC and k(s) values of control seedlings remained constant during refoliation. k(s) of new stems, leaf specific conductivity and A of leaves grown from new stems in defoliated and control seedlings were not significantly different, but g(s) was higher in defoliated than in control seedlings. The gradual increase of PLC and decrease of k(s) values in old stems after defoliation was unexpected under well-irrigated conditions, but appeared to have little impact on new stems formed after defoliation. The gradual loss of conductivity measured during the refoliation process under well-irrigated conditions suggests that young seedlings of P. tremuloides may be more susceptible to cavitation after herbivore damage under drought conditions.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">19603186</PMID>
<DateCompleted>
<Year>2010</Year>
<Month>01</Month>
<Day>08</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1432-1939</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>161</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2009</Year>
<Month>Oct</Month>
</PubDate>
</JournalIssue>
<Title>Oecologia</Title>
<ISOAbbreviation>Oecologia</ISOAbbreviation>
</Journal>
<ArticleTitle>Impact of simulated herbivory on water relations of aspen (Populus tremuloides) seedlings: the role of new tissue in the hydraulic conductivity recovery cycle.</ArticleTitle>
<Pagination>
<MedlinePgn>665-71</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00442-009-1416-8</ELocationID>
<Abstract>
<AbstractText>Physiological mechanisms behind plant-herbivore interactions are commonly approached as input-output systems where the role of plant physiology is viewed as a black box. Studies evaluating impacts of defoliation on plant physiology have mostly focused on changes in photosynthesis while the overall impact on plant water relations is largely unknown. Stem hydraulic conductivity (k(h)), stem specific conductivity (k(s)), percent loss of hydraulic conductivity (PLC), CO(2) assimilation (A) and stomatal conductance (g(s)) were measured on well-irrigated 1-month-old Populus tremuloides (Michx.) defoliated and control seedlings until complete refoliation. PLC values of defoliated seedlings gradually increased during the refoliation process despite them being kept well irrigated. k(s) of defoliated seedlings gradually decreased during refoliation. PLC and k(s) values of control seedlings remained constant during refoliation. k(s) of new stems, leaf specific conductivity and A of leaves grown from new stems in defoliated and control seedlings were not significantly different, but g(s) was higher in defoliated than in control seedlings. The gradual increase of PLC and decrease of k(s) values in old stems after defoliation was unexpected under well-irrigated conditions, but appeared to have little impact on new stems formed after defoliation. The gradual loss of conductivity measured during the refoliation process under well-irrigated conditions suggests that young seedlings of P. tremuloides may be more susceptible to cavitation after herbivore damage under drought conditions.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Gálvez</LastName>
<ForeName>David A</ForeName>
<Initials>DA</Initials>
<AffiliationInfo>
<Affiliation>Department of Renewable Resources, University of Alberta, Edmonton, AB T6G2E3, Canada. david.galvez@ualberta.ca</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tyree</LastName>
<ForeName>M T</ForeName>
<Initials>MT</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2009</Year>
<Month>07</Month>
<Day>15</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Oecologia</MedlineTA>
<NlmUniqueID>0150372</NlmUniqueID>
<ISSNLinking>0029-8549</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>059QF0KO0R</RegistryNumber>
<NameOfSubstance UI="D014867">Water</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>142M471B3J</RegistryNumber>
<NameOfSubstance UI="D002245">Carbon Dioxide</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D002245" MajorTopicYN="N">Carbon Dioxide</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055864" MajorTopicYN="N">Droughts</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006874" MajorTopicYN="N">Hydrostatic Pressure</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018547" MajorTopicYN="N">Plant Stems</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054046" MajorTopicYN="N">Plant Stomata</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D036226" MajorTopicYN="N">Seedlings</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013997" MajorTopicYN="N">Time Factors</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014867" MajorTopicYN="N">Water</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2008</Year>
<Month>11</Month>
<Day>07</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2009</Year>
<Month>06</Month>
<Day>27</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2009</Year>
<Month>7</Month>
<Day>16</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2009</Year>
<Month>7</Month>
<Day>16</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2010</Year>
<Month>1</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">19603186</ArticleId>
<ArticleId IdType="doi">10.1007/s00442-009-1416-8</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Oecologia. 2007 Dec;154(3):467-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17934763</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2003 Aug;136(3):394-401</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12783294</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2006;169(2):243-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16411928</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2002 Dec;22(17):1211-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12464574</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Bot. 2002 Aug;89(8):1275-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21665729</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2003 Jan;134(2):167-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12647156</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1988 Nov;88(3):574-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16666351</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2006;57(12):3157-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16882643</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1984 Mar;61(3):311-318</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28311055</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1993 Sep;95(3):358-364</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28314011</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2005 Dec;146(2):190-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16133192</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Canada</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Tyree, M T" sort="Tyree, M T" uniqKey="Tyree M" first="M T" last="Tyree">M T Tyree</name>
</noCountry>
<country name="Canada">
<noRegion>
<name sortKey="Galvez, David A" sort="Galvez, David A" uniqKey="Galvez D" first="David A" last="Gálvez">David A. Gálvez</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003591 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 003591 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:19603186
   |texte=   Impact of simulated herbivory on water relations of aspen (Populus tremuloides) seedlings: the role of new tissue in the hydraulic conductivity recovery cycle.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:19603186" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020