Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

PHYTOREMEDIATION OF INORGANICS: REALISM AND SYNERGIES.

Identifieur interne : 003540 ( Main/Exploration ); précédent : 003539; suivant : 003541

PHYTOREMEDIATION OF INORGANICS: REALISM AND SYNERGIES.

Auteurs : Nicholas M. Dickinson [Royaume-Uni] ; Alan J M. Baker [Australie] ; Augustine Doronila [Australie] ; Scott Laidlaw [Australie] ; Roger D. Reeves [Australie]

Source :

RBID : pubmed:28133994

Descripteurs français

English descriptors

Abstract

There are very few practical demonstrations of the phytoextraction of metals and metalloids from soils and sediments beyond small-scale and short-term trials. The two approaches used have been based on using 1) hyperaccumulator species, such as Thlaspi caerulescens (Pb, Zn, Cd, Ni), Alyssum spp. (Ni, Co), and Pteris vittata (As) or 2) fast-growing plants, such as Salix and Populus spp. that accumulate above-average concentrations of only a smaller number of the more mobile trace elements (Cd, Zn, B). Until we have advanced much more along the pathway of genetic isolation and transfer of hyperaccumulator traits into productive plants, there is a high risk in marketing either approach as a technology or stand-alone solution to clean up contaminated land. There are particular uncertainties over the longer-term effectiveness of phytoextraction and associated environmental issues. Marginally contaminated agricultural soils provide the most likely land use where phytoextraction can be used as a polishing technology. An alternative and more useful practical approach in many situations currently would be to give more attention to crops selected for phytoexclusion: selecting crops that do not translocate high concentrations of metals to edible parts. Soils of brownfield, urban, and industrial areas provide a large-scale opportunity to use phytoremediation, but the focus here should be on the more realistic possibilities of risk-managed phytostabilization and monitored natural attenuation. We argue that the wider practical applications of phytoremediation are too often overlooked. There is huge scope for cross-cutting other environmental agenda, with synergies that involve the recovery and provision of services from degraded landscapes and contaminated soils. An additional focus on biomass energy, improved biodiversity, watershed management, soil protection, carbon sequestration, and improved soil health is required for the justification and advancement of phytotechnologies.

DOI: 10.1080/15226510802378368
PubMed: 28133994


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">PHYTOREMEDIATION OF INORGANICS: REALISM AND SYNERGIES.</title>
<author>
<name sortKey="Dickinson, Nicholas M" sort="Dickinson, Nicholas M" uniqKey="Dickinson N" first="Nicholas M" last="Dickinson">Nicholas M. Dickinson</name>
<affiliation wicri:level="1">
<nlm:affiliation>a Faculty of Science , Liverpool John Moores University , Liverpool , United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>a Faculty of Science , Liverpool John Moores University , Liverpool </wicri:regionArea>
<wicri:noRegion>Liverpool </wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Baker, Alan J M" sort="Baker, Alan J M" uniqKey="Baker A" first="Alan J M" last="Baker">Alan J M. Baker</name>
<affiliation wicri:level="1">
<nlm:affiliation>b School of Botany , The University of Melbourne , Parkville , Melbourne , Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>b School of Botany , The University of Melbourne , Parkville , Melbourne </wicri:regionArea>
<wicri:noRegion>Melbourne </wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Doronila, Augustine" sort="Doronila, Augustine" uniqKey="Doronila A" first="Augustine" last="Doronila">Augustine Doronila</name>
<affiliation wicri:level="1">
<nlm:affiliation>b School of Botany , The University of Melbourne , Parkville , Melbourne , Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>b School of Botany , The University of Melbourne , Parkville , Melbourne </wicri:regionArea>
<wicri:noRegion>Melbourne </wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Laidlaw, Scott" sort="Laidlaw, Scott" uniqKey="Laidlaw S" first="Scott" last="Laidlaw">Scott Laidlaw</name>
<affiliation wicri:level="1">
<nlm:affiliation>b School of Botany , The University of Melbourne , Parkville , Melbourne , Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>b School of Botany , The University of Melbourne , Parkville , Melbourne </wicri:regionArea>
<wicri:noRegion>Melbourne </wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Reeves, Roger D" sort="Reeves, Roger D" uniqKey="Reeves R" first="Roger D" last="Reeves">Roger D. Reeves</name>
<affiliation wicri:level="1">
<nlm:affiliation>b School of Botany , The University of Melbourne , Parkville , Melbourne , Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>b School of Botany , The University of Melbourne , Parkville , Melbourne </wicri:regionArea>
<wicri:noRegion>Melbourne </wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2009">2009</date>
<idno type="RBID">pubmed:28133994</idno>
<idno type="pmid">28133994</idno>
<idno type="doi">10.1080/15226510802378368</idno>
<idno type="wicri:Area/Main/Corpus">003672</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">003672</idno>
<idno type="wicri:Area/Main/Curation">003672</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">003672</idno>
<idno type="wicri:Area/Main/Exploration">003672</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">PHYTOREMEDIATION OF INORGANICS: REALISM AND SYNERGIES.</title>
<author>
<name sortKey="Dickinson, Nicholas M" sort="Dickinson, Nicholas M" uniqKey="Dickinson N" first="Nicholas M" last="Dickinson">Nicholas M. Dickinson</name>
<affiliation wicri:level="1">
<nlm:affiliation>a Faculty of Science , Liverpool John Moores University , Liverpool , United Kingdom.</nlm:affiliation>
<country xml:lang="fr">Royaume-Uni</country>
<wicri:regionArea>a Faculty of Science , Liverpool John Moores University , Liverpool </wicri:regionArea>
<wicri:noRegion>Liverpool </wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Baker, Alan J M" sort="Baker, Alan J M" uniqKey="Baker A" first="Alan J M" last="Baker">Alan J M. Baker</name>
<affiliation wicri:level="1">
<nlm:affiliation>b School of Botany , The University of Melbourne , Parkville , Melbourne , Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>b School of Botany , The University of Melbourne , Parkville , Melbourne </wicri:regionArea>
<wicri:noRegion>Melbourne </wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Doronila, Augustine" sort="Doronila, Augustine" uniqKey="Doronila A" first="Augustine" last="Doronila">Augustine Doronila</name>
<affiliation wicri:level="1">
<nlm:affiliation>b School of Botany , The University of Melbourne , Parkville , Melbourne , Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>b School of Botany , The University of Melbourne , Parkville , Melbourne </wicri:regionArea>
<wicri:noRegion>Melbourne </wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Laidlaw, Scott" sort="Laidlaw, Scott" uniqKey="Laidlaw S" first="Scott" last="Laidlaw">Scott Laidlaw</name>
<affiliation wicri:level="1">
<nlm:affiliation>b School of Botany , The University of Melbourne , Parkville , Melbourne , Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>b School of Botany , The University of Melbourne , Parkville , Melbourne </wicri:regionArea>
<wicri:noRegion>Melbourne </wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Reeves, Roger D" sort="Reeves, Roger D" uniqKey="Reeves R" first="Roger D" last="Reeves">Roger D. Reeves</name>
<affiliation wicri:level="1">
<nlm:affiliation>b School of Botany , The University of Melbourne , Parkville , Melbourne , Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>b School of Botany , The University of Melbourne , Parkville , Melbourne </wicri:regionArea>
<wicri:noRegion>Melbourne </wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">International journal of phytoremediation</title>
<idno type="eISSN">1549-7879</idno>
<imprint>
<date when="2009" type="published">2009</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Agriculture (MeSH)</term>
<term>Biodegradation, Environmental (MeSH)</term>
<term>Environmental Restoration and Remediation (MeSH)</term>
<term>Metals, Heavy (metabolism)</term>
<term>Soil Pollutants (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Agriculture (MeSH)</term>
<term>Assainissement et restauration de l'environnement (MeSH)</term>
<term>Dépollution biologique de l'environnement (MeSH)</term>
<term>Métaux lourds (métabolisme)</term>
<term>Polluants du sol (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Metals, Heavy</term>
<term>Soil Pollutants</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Métaux lourds</term>
<term>Polluants du sol</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Agriculture</term>
<term>Biodegradation, Environmental</term>
<term>Environmental Restoration and Remediation</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Agriculture</term>
<term>Assainissement et restauration de l'environnement</term>
<term>Dépollution biologique de l'environnement</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">There are very few practical demonstrations of the phytoextraction of metals and metalloids from soils and sediments beyond small-scale and short-term trials. The two approaches used have been based on using 1) hyperaccumulator species, such as Thlaspi caerulescens (Pb, Zn, Cd, Ni), Alyssum spp. (Ni, Co), and Pteris vittata (As) or 2) fast-growing plants, such as Salix and Populus spp. that accumulate above-average concentrations of only a smaller number of the more mobile trace elements (Cd, Zn, B). Until we have advanced much more along the pathway of genetic isolation and transfer of hyperaccumulator traits into productive plants, there is a high risk in marketing either approach as a technology or stand-alone solution to clean up contaminated land. There are particular uncertainties over the longer-term effectiveness of phytoextraction and associated environmental issues. Marginally contaminated agricultural soils provide the most likely land use where phytoextraction can be used as a polishing technology. An alternative and more useful practical approach in many situations currently would be to give more attention to crops selected for phytoexclusion: selecting crops that do not translocate high concentrations of metals to edible parts. Soils of brownfield, urban, and industrial areas provide a large-scale opportunity to use phytoremediation, but the focus here should be on the more realistic possibilities of risk-managed phytostabilization and monitored natural attenuation. We argue that the wider practical applications of phytoremediation are too often overlooked. There is huge scope for cross-cutting other environmental agenda, with synergies that involve the recovery and provision of services from degraded landscapes and contaminated soils. An additional focus on biomass energy, improved biodiversity, watershed management, soil protection, carbon sequestration, and improved soil health is required for the justification and advancement of phytotechnologies.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">28133994</PMID>
<DateCompleted>
<Year>2017</Year>
<Month>03</Month>
<Day>06</Day>
</DateCompleted>
<DateRevised>
<Year>2017</Year>
<Month>03</Month>
<Day>06</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1549-7879</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>11</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2009</Year>
<Month>Feb</Month>
</PubDate>
</JournalIssue>
<Title>International journal of phytoremediation</Title>
<ISOAbbreviation>Int J Phytoremediation</ISOAbbreviation>
</Journal>
<ArticleTitle>PHYTOREMEDIATION OF INORGANICS: REALISM AND SYNERGIES.</ArticleTitle>
<Pagination>
<MedlinePgn>97-114</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1080/15226510802378368</ELocationID>
<Abstract>
<AbstractText>There are very few practical demonstrations of the phytoextraction of metals and metalloids from soils and sediments beyond small-scale and short-term trials. The two approaches used have been based on using 1) hyperaccumulator species, such as Thlaspi caerulescens (Pb, Zn, Cd, Ni), Alyssum spp. (Ni, Co), and Pteris vittata (As) or 2) fast-growing plants, such as Salix and Populus spp. that accumulate above-average concentrations of only a smaller number of the more mobile trace elements (Cd, Zn, B). Until we have advanced much more along the pathway of genetic isolation and transfer of hyperaccumulator traits into productive plants, there is a high risk in marketing either approach as a technology or stand-alone solution to clean up contaminated land. There are particular uncertainties over the longer-term effectiveness of phytoextraction and associated environmental issues. Marginally contaminated agricultural soils provide the most likely land use where phytoextraction can be used as a polishing technology. An alternative and more useful practical approach in many situations currently would be to give more attention to crops selected for phytoexclusion: selecting crops that do not translocate high concentrations of metals to edible parts. Soils of brownfield, urban, and industrial areas provide a large-scale opportunity to use phytoremediation, but the focus here should be on the more realistic possibilities of risk-managed phytostabilization and monitored natural attenuation. We argue that the wider practical applications of phytoremediation are too often overlooked. There is huge scope for cross-cutting other environmental agenda, with synergies that involve the recovery and provision of services from degraded landscapes and contaminated soils. An additional focus on biomass energy, improved biodiversity, watershed management, soil protection, carbon sequestration, and improved soil health is required for the justification and advancement of phytotechnologies.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Dickinson</LastName>
<ForeName>Nicholas M</ForeName>
<Initials>NM</Initials>
<AffiliationInfo>
<Affiliation>a Faculty of Science , Liverpool John Moores University , Liverpool , United Kingdom.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Baker</LastName>
<ForeName>Alan J M</ForeName>
<Initials>AJ</Initials>
<AffiliationInfo>
<Affiliation>b School of Botany , The University of Melbourne , Parkville , Melbourne , Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Doronila</LastName>
<ForeName>Augustine</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>b School of Botany , The University of Melbourne , Parkville , Melbourne , Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Laidlaw</LastName>
<ForeName>Scott</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>b School of Botany , The University of Melbourne , Parkville , Melbourne , Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Reeves</LastName>
<ForeName>Roger D</ForeName>
<Initials>RD</Initials>
<AffiliationInfo>
<Affiliation>b School of Botany , The University of Melbourne , Parkville , Melbourne , Australia.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Int J Phytoremediation</MedlineTA>
<NlmUniqueID>101136878</NlmUniqueID>
<ISSNLinking>1522-6514</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D019216">Metals, Heavy</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012989">Soil Pollutants</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000383" MajorTopicYN="Y">Agriculture</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001673" MajorTopicYN="N">Biodegradation, Environmental</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D052918" MajorTopicYN="Y">Environmental Restoration and Remediation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019216" MajorTopicYN="N">Metals, Heavy</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012989" MajorTopicYN="N">Soil Pollutants</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">ecosystem services</Keyword>
<Keyword MajorTopicYN="N">heavy metals</Keyword>
<Keyword MajorTopicYN="N">phytotechnologies</Keyword>
<Keyword MajorTopicYN="N">soil contamination</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>1</Month>
<Day>31</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2009</Year>
<Month>2</Month>
<Day>1</Day>
<Hour>0</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2017</Year>
<Month>3</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">28133994</ArticleId>
<ArticleId IdType="doi">10.1080/15226510802378368</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Australie</li>
<li>Royaume-Uni</li>
</country>
</list>
<tree>
<country name="Royaume-Uni">
<noRegion>
<name sortKey="Dickinson, Nicholas M" sort="Dickinson, Nicholas M" uniqKey="Dickinson N" first="Nicholas M" last="Dickinson">Nicholas M. Dickinson</name>
</noRegion>
</country>
<country name="Australie">
<noRegion>
<name sortKey="Baker, Alan J M" sort="Baker, Alan J M" uniqKey="Baker A" first="Alan J M" last="Baker">Alan J M. Baker</name>
</noRegion>
<name sortKey="Doronila, Augustine" sort="Doronila, Augustine" uniqKey="Doronila A" first="Augustine" last="Doronila">Augustine Doronila</name>
<name sortKey="Laidlaw, Scott" sort="Laidlaw, Scott" uniqKey="Laidlaw S" first="Scott" last="Laidlaw">Scott Laidlaw</name>
<name sortKey="Reeves, Roger D" sort="Reeves, Roger D" uniqKey="Reeves R" first="Roger D" last="Reeves">Roger D. Reeves</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003540 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 003540 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:28133994
   |texte=   PHYTOREMEDIATION OF INORGANICS: REALISM AND SYNERGIES.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:28133994" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020