Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The evolution of nuclear auxin signalling.

Identifieur interne : 003456 ( Main/Exploration ); précédent : 003455; suivant : 003457

The evolution of nuclear auxin signalling.

Auteurs : Ivan A. Paponov [Allemagne] ; William Teale ; Daniel Lang ; Martina Paponov ; Ralf Reski ; Stefan A. Rensing ; Klaus Palme

Source :

RBID : pubmed:19493348

Descripteurs français

English descriptors

Abstract

BACKGROUND

The plant hormone auxin directs many aspects of plant growth and development. To understand the evolution of auxin signalling, we compared the genes encoding two families of crucial transcriptional regulators, AUXIN RESPONSE FACTOR (ARF) and AUXIN/INDOLE-3-ACETIC ACID (Aux/IAA), among flowering plants and two non-seed plants, Physcomitrella patens and Selaginella moellendorffii.

RESULTS

Comparative analysis of the P. patens, S. moellendorffii and Arabidopsis thaliana genomes suggests that the well-established rapid transcriptional response to auxin of flowering plants, evolved in vascular plants after their divergence from the last common ancestor shared with mosses. An N-terminally truncated ARF transcriptional activator is encoded by the genomes of P. patens and S. moellendorffii, and suggests a supplementary mechanism of nuclear auxin signalling, absent in flowering plants. Site-specific analyses of positive Darwinian selection revealed relatively high rates of synonymous substitution in the A. thaliana ARFs of classes IIa (and their closest orthologous genes in poplar) and Ib, suggesting that neofunctionalization in important functional regions has driven the evolution of auxin signalling in flowering plants. Primary auxin responsive gene families (GH3, SAUR, LBD) show different phylogenetic profiles in P. patens, S. moellendorffii and flowering plants, highlighting genes for further study.

CONCLUSION

The genome of P. patens encodes all of the basic components necessary for a rapid auxin response. The spatial separation of the Q-rich activator domain and DNA-binding domain suggests an alternative mechanism of transcriptional control in P. patens distinct from the mechanism seen in flowering plants. Significantly, the genome of S. moellendorffii is predicted to encode proteins suitable for both methods of regulation.


DOI: 10.1186/1471-2148-9-126
PubMed: 19493348
PubMed Central: PMC2708152


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The evolution of nuclear auxin signalling.</title>
<author>
<name sortKey="Paponov, Ivan A" sort="Paponov, Ivan A" uniqKey="Paponov I" first="Ivan A" last="Paponov">Ivan A. Paponov</name>
<affiliation wicri:level="3">
<nlm:affiliation>Botany, Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany. ivan.paponov@biologie.uni-freiburg.de</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Botany, Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Bade-Wurtemberg</region>
<region type="district" nuts="2">District de Fribourg-en-Brisgau</region>
<settlement type="city">Fribourg-en-Brisgau</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Teale, William" sort="Teale, William" uniqKey="Teale W" first="William" last="Teale">William Teale</name>
</author>
<author>
<name sortKey="Lang, Daniel" sort="Lang, Daniel" uniqKey="Lang D" first="Daniel" last="Lang">Daniel Lang</name>
</author>
<author>
<name sortKey="Paponov, Martina" sort="Paponov, Martina" uniqKey="Paponov M" first="Martina" last="Paponov">Martina Paponov</name>
</author>
<author>
<name sortKey="Reski, Ralf" sort="Reski, Ralf" uniqKey="Reski R" first="Ralf" last="Reski">Ralf Reski</name>
</author>
<author>
<name sortKey="Rensing, Stefan A" sort="Rensing, Stefan A" uniqKey="Rensing S" first="Stefan A" last="Rensing">Stefan A. Rensing</name>
</author>
<author>
<name sortKey="Palme, Klaus" sort="Palme, Klaus" uniqKey="Palme K" first="Klaus" last="Palme">Klaus Palme</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2009">2009</date>
<idno type="RBID">pubmed:19493348</idno>
<idno type="pmid">19493348</idno>
<idno type="doi">10.1186/1471-2148-9-126</idno>
<idno type="pmc">PMC2708152</idno>
<idno type="wicri:Area/Main/Corpus">003547</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">003547</idno>
<idno type="wicri:Area/Main/Curation">003547</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">003547</idno>
<idno type="wicri:Area/Main/Exploration">003547</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The evolution of nuclear auxin signalling.</title>
<author>
<name sortKey="Paponov, Ivan A" sort="Paponov, Ivan A" uniqKey="Paponov I" first="Ivan A" last="Paponov">Ivan A. Paponov</name>
<affiliation wicri:level="3">
<nlm:affiliation>Botany, Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany. ivan.paponov@biologie.uni-freiburg.de</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Botany, Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Bade-Wurtemberg</region>
<region type="district" nuts="2">District de Fribourg-en-Brisgau</region>
<settlement type="city">Fribourg-en-Brisgau</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Teale, William" sort="Teale, William" uniqKey="Teale W" first="William" last="Teale">William Teale</name>
</author>
<author>
<name sortKey="Lang, Daniel" sort="Lang, Daniel" uniqKey="Lang D" first="Daniel" last="Lang">Daniel Lang</name>
</author>
<author>
<name sortKey="Paponov, Martina" sort="Paponov, Martina" uniqKey="Paponov M" first="Martina" last="Paponov">Martina Paponov</name>
</author>
<author>
<name sortKey="Reski, Ralf" sort="Reski, Ralf" uniqKey="Reski R" first="Ralf" last="Reski">Ralf Reski</name>
</author>
<author>
<name sortKey="Rensing, Stefan A" sort="Rensing, Stefan A" uniqKey="Rensing S" first="Stefan A" last="Rensing">Stefan A. Rensing</name>
</author>
<author>
<name sortKey="Palme, Klaus" sort="Palme, Klaus" uniqKey="Palme K" first="Klaus" last="Palme">Klaus Palme</name>
</author>
</analytic>
<series>
<title level="j">BMC evolutionary biology</title>
<idno type="eISSN">1471-2148</idno>
<imprint>
<date when="2009" type="published">2009</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Arabidopsis (genetics)</term>
<term>Bryopsida (genetics)</term>
<term>Comparative Genomic Hybridization (MeSH)</term>
<term>DNA, Plant (genetics)</term>
<term>Evolution, Molecular (MeSH)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Genes, Plant (MeSH)</term>
<term>Genome, Plant (MeSH)</term>
<term>Indoleacetic Acids (metabolism)</term>
<term>Phylogeny (MeSH)</term>
<term>Plant Growth Regulators (metabolism)</term>
<term>Plant Proteins (genetics)</term>
<term>Selaginellaceae (genetics)</term>
<term>Sequence Alignment (MeSH)</term>
<term>Sequence Analysis, DNA (MeSH)</term>
<term>Trans-Activators (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ADN des plantes (génétique)</term>
<term>Acides indolacétiques (métabolisme)</term>
<term>Alignement de séquences (MeSH)</term>
<term>Analyse de séquence d'ADN (MeSH)</term>
<term>Arabidopsis (génétique)</term>
<term>Bryopsida (génétique)</term>
<term>Facteur de croissance végétal (métabolisme)</term>
<term>Gènes de plante (MeSH)</term>
<term>Génome végétal (MeSH)</term>
<term>Hybridation génomique comparative (MeSH)</term>
<term>Phylogenèse (MeSH)</term>
<term>Protéines végétales (génétique)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Selaginellaceae (génétique)</term>
<term>Transactivateurs (génétique)</term>
<term>Évolution moléculaire (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>DNA, Plant</term>
<term>Plant Proteins</term>
<term>Trans-Activators</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Arabidopsis</term>
<term>Bryopsida</term>
<term>Selaginellaceae</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>ADN des plantes</term>
<term>Arabidopsis</term>
<term>Bryopsida</term>
<term>Protéines végétales</term>
<term>Selaginellaceae</term>
<term>Transactivateurs</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Indoleacetic Acids</term>
<term>Plant Growth Regulators</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Acides indolacétiques</term>
<term>Facteur de croissance végétal</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Comparative Genomic Hybridization</term>
<term>Evolution, Molecular</term>
<term>Gene Expression Regulation, Plant</term>
<term>Genes, Plant</term>
<term>Genome, Plant</term>
<term>Phylogeny</term>
<term>Sequence Alignment</term>
<term>Sequence Analysis, DNA</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Alignement de séquences</term>
<term>Analyse de séquence d'ADN</term>
<term>Gènes de plante</term>
<term>Génome végétal</term>
<term>Hybridation génomique comparative</term>
<term>Phylogenèse</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Évolution moléculaire</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>The plant hormone auxin directs many aspects of plant growth and development. To understand the evolution of auxin signalling, we compared the genes encoding two families of crucial transcriptional regulators, AUXIN RESPONSE FACTOR (ARF) and AUXIN/INDOLE-3-ACETIC ACID (Aux/IAA), among flowering plants and two non-seed plants, Physcomitrella patens and Selaginella moellendorffii.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>Comparative analysis of the P. patens, S. moellendorffii and Arabidopsis thaliana genomes suggests that the well-established rapid transcriptional response to auxin of flowering plants, evolved in vascular plants after their divergence from the last common ancestor shared with mosses. An N-terminally truncated ARF transcriptional activator is encoded by the genomes of P. patens and S. moellendorffii, and suggests a supplementary mechanism of nuclear auxin signalling, absent in flowering plants. Site-specific analyses of positive Darwinian selection revealed relatively high rates of synonymous substitution in the A. thaliana ARFs of classes IIa (and their closest orthologous genes in poplar) and Ib, suggesting that neofunctionalization in important functional regions has driven the evolution of auxin signalling in flowering plants. Primary auxin responsive gene families (GH3, SAUR, LBD) show different phylogenetic profiles in P. patens, S. moellendorffii and flowering plants, highlighting genes for further study.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSION</b>
</p>
<p>The genome of P. patens encodes all of the basic components necessary for a rapid auxin response. The spatial separation of the Q-rich activator domain and DNA-binding domain suggests an alternative mechanism of transcriptional control in P. patens distinct from the mechanism seen in flowering plants. Significantly, the genome of S. moellendorffii is predicted to encode proteins suitable for both methods of regulation.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">19493348</PMID>
<DateCompleted>
<Year>2009</Year>
<Month>07</Month>
<Day>27</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1471-2148</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>9</Volume>
<PubDate>
<Year>2009</Year>
<Month>Jun</Month>
<Day>03</Day>
</PubDate>
</JournalIssue>
<Title>BMC evolutionary biology</Title>
<ISOAbbreviation>BMC Evol Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>The evolution of nuclear auxin signalling.</ArticleTitle>
<Pagination>
<MedlinePgn>126</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/1471-2148-9-126</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">The plant hormone auxin directs many aspects of plant growth and development. To understand the evolution of auxin signalling, we compared the genes encoding two families of crucial transcriptional regulators, AUXIN RESPONSE FACTOR (ARF) and AUXIN/INDOLE-3-ACETIC ACID (Aux/IAA), among flowering plants and two non-seed plants, Physcomitrella patens and Selaginella moellendorffii.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">Comparative analysis of the P. patens, S. moellendorffii and Arabidopsis thaliana genomes suggests that the well-established rapid transcriptional response to auxin of flowering plants, evolved in vascular plants after their divergence from the last common ancestor shared with mosses. An N-terminally truncated ARF transcriptional activator is encoded by the genomes of P. patens and S. moellendorffii, and suggests a supplementary mechanism of nuclear auxin signalling, absent in flowering plants. Site-specific analyses of positive Darwinian selection revealed relatively high rates of synonymous substitution in the A. thaliana ARFs of classes IIa (and their closest orthologous genes in poplar) and Ib, suggesting that neofunctionalization in important functional regions has driven the evolution of auxin signalling in flowering plants. Primary auxin responsive gene families (GH3, SAUR, LBD) show different phylogenetic profiles in P. patens, S. moellendorffii and flowering plants, highlighting genes for further study.</AbstractText>
<AbstractText Label="CONCLUSION" NlmCategory="CONCLUSIONS">The genome of P. patens encodes all of the basic components necessary for a rapid auxin response. The spatial separation of the Q-rich activator domain and DNA-binding domain suggests an alternative mechanism of transcriptional control in P. patens distinct from the mechanism seen in flowering plants. Significantly, the genome of S. moellendorffii is predicted to encode proteins suitable for both methods of regulation.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Paponov</LastName>
<ForeName>Ivan A</ForeName>
<Initials>IA</Initials>
<AffiliationInfo>
<Affiliation>Botany, Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104 Freiburg, Germany. ivan.paponov@biologie.uni-freiburg.de</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Teale</LastName>
<ForeName>William</ForeName>
<Initials>W</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Lang</LastName>
<ForeName>Daniel</ForeName>
<Initials>D</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Paponov</LastName>
<ForeName>Martina</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Reski</LastName>
<ForeName>Ralf</ForeName>
<Initials>R</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Rensing</LastName>
<ForeName>Stefan A</ForeName>
<Initials>SA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Palme</LastName>
<ForeName>Klaus</ForeName>
<Initials>K</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2009</Year>
<Month>06</Month>
<Day>03</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>BMC Evol Biol</MedlineTA>
<NlmUniqueID>100966975</NlmUniqueID>
<ISSNLinking>1471-2148</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018744">DNA, Plant</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D007210">Indoleacetic Acids</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010937">Plant Growth Regulators</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D015534">Trans-Activators</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D017360" MajorTopicYN="N">Arabidopsis</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019068" MajorTopicYN="N">Bryopsida</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055028" MajorTopicYN="N">Comparative Genomic Hybridization</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018744" MajorTopicYN="N">DNA, Plant</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019143" MajorTopicYN="N">Evolution, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017343" MajorTopicYN="N">Genes, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018745" MajorTopicYN="N">Genome, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007210" MajorTopicYN="N">Indoleacetic Acids</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="N">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010937" MajorTopicYN="N">Plant Growth Regulators</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032503" MajorTopicYN="N">Selaginellaceae</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016415" MajorTopicYN="N">Sequence Alignment</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017422" MajorTopicYN="N">Sequence Analysis, DNA</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015534" MajorTopicYN="N">Trans-Activators</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2008</Year>
<Month>09</Month>
<Day>15</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2009</Year>
<Month>06</Month>
<Day>03</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2009</Year>
<Month>6</Month>
<Day>5</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2009</Year>
<Month>6</Month>
<Day>6</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2009</Year>
<Month>7</Month>
<Day>28</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">19493348</ArticleId>
<ArticleId IdType="pii">1471-2148-9-126</ArticleId>
<ArticleId IdType="doi">10.1186/1471-2148-9-126</ArticleId>
<ArticleId IdType="pmc">PMC2708152</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Bioinformatics. 2006 Nov 1;22(21):2688-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16928733</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1993 Oct 20;233(4):580-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8411166</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2004 Nov 18;432(7015):386-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15549104</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2007;395:195-204</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17993675</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1997 Oct 28;94(22):11786-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9342315</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2000 May;155(1):431-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10790415</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Feb 28;103(9):3203-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16492730</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2005;6:31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15713233</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2000 Sep 8;302(1):205-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10964570</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2007 Oct;24(10):2298-309</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17670808</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2002 Feb;14(2):373-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11884681</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2001 Nov 15;414(6861):271-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11713520</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1987 Mar 5-11;326(6108):96-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3493437</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1994 Sep;106(1):37-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7972520</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Development. 1997 Nov;124(22):4481-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9409666</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2008 Apr;54(1):118-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18088308</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2007;7:59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17986329</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2004 Feb;16(2):533-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14742873</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2003 Aug;21(12):1143-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12789498</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2008 Mar 7;319(5868):1384-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18258861</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Jul;135(3):1738-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15247399</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2006 Feb;23(2):469-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16280546</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2005 May 26;435(7041):446-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15917798</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2005 May 26;435(7041):441-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15917797</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2002 Jul 1;16(13):1616-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12101121</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2008 Jan;36(Database issue):D281-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18039703</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 Jun;19(6):1750-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17601824</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1982 Jan;79(2):418-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16593146</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 Jan;19(1):118-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17259263</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2005;6:108</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15857510</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2008 Oct;13(10):542-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18762443</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2002 Jun-Jul;49(3-4):373-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12036261</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2004 Aug;16(8):2117-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15258265</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2001 Dec;13(12):2809-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11752389</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2005 Apr;22(4):1107-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15689528</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1999 May 11;96(10):5844-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10318972</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1997 Jun 20;276(5320):1865-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9188533</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1998 Oct;118(2):341-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9765520</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Apr 8;105(14):5632-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18391211</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Jul 15;105(28):9829-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18599455</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2007 Apr 5;446(7136):640-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17410169</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2008 Mar;1(2):321-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19825543</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Hered. 2001 Jul-Aug;92(4):371-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11535656</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2005 Feb;17(2):444-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15659631</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2004 Jul;161(7):823-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15310072</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2005;33(2):511-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15661851</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2007 Oct;10(5):453-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17900969</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2005 May 1;21(9):2104-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15647292</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2007 Apr 1;23(7):793-801</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17332025</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Funct Integr Genomics. 2006 Jan;6(1):47-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16200395</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2005 May 18;24(10):1874-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15889151</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genomics. 2006 Sep;88(3):360-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16707243</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1995 Jan;139(1):421-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7705642</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009 Jan;181(2):323-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19032442</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2001 Apr;13(4):829-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11283339</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Comput Appl Biosci. 1997 Oct;13(5):555-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9367129</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Development. 2006 Nov;133(21):4211-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17021043</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2000 Mar;21(6):553-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10758506</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Funct Integr Genomics. 2006 Jan;6(1):36-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15856348</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Comput Biol. 2006 Mar;13(2):320-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16597243</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2008 Jan;36(Database issue):D245-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18003654</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evol Dev. 2008 Mar-Apr;10(2):176-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18315811</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2004 Feb 12;20(3):426-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14960472</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1997 Nov;9(11):1963-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9401121</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2007;7:13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17359535</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2003 Feb;15(2):533-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12566590</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2008 Jan 4;319(5859):64-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18079367</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2007 Oct;52(1):133-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17672844</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2005 Jun;17(6):1658-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15849273</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2005 May;17(5):1360-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15829600</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2001 Oct;13(10):2349-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11595806</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 2007 Jun 1;394(1-2):13-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17408882</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2006 Nov;7(11):847-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16990790</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2007 Jun 7;447(7145):706-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17554306</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1996 May;111(1):9-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8685277</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 Aug;19(8):2440-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17675404</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2005 May;37(5):501-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15806101</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Development. 2003 Dec;130(23):5769-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14534134</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2002 Jun-Jul;49(3-4):319-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12036257</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Allemagne</li>
</country>
<region>
<li>Bade-Wurtemberg</li>
<li>District de Fribourg-en-Brisgau</li>
</region>
<settlement>
<li>Fribourg-en-Brisgau</li>
</settlement>
</list>
<tree>
<noCountry>
<name sortKey="Lang, Daniel" sort="Lang, Daniel" uniqKey="Lang D" first="Daniel" last="Lang">Daniel Lang</name>
<name sortKey="Palme, Klaus" sort="Palme, Klaus" uniqKey="Palme K" first="Klaus" last="Palme">Klaus Palme</name>
<name sortKey="Paponov, Martina" sort="Paponov, Martina" uniqKey="Paponov M" first="Martina" last="Paponov">Martina Paponov</name>
<name sortKey="Rensing, Stefan A" sort="Rensing, Stefan A" uniqKey="Rensing S" first="Stefan A" last="Rensing">Stefan A. Rensing</name>
<name sortKey="Reski, Ralf" sort="Reski, Ralf" uniqKey="Reski R" first="Ralf" last="Reski">Ralf Reski</name>
<name sortKey="Teale, William" sort="Teale, William" uniqKey="Teale W" first="William" last="Teale">William Teale</name>
</noCountry>
<country name="Allemagne">
<region name="Bade-Wurtemberg">
<name sortKey="Paponov, Ivan A" sort="Paponov, Ivan A" uniqKey="Paponov I" first="Ivan A" last="Paponov">Ivan A. Paponov</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003456 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 003456 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:19493348
   |texte=   The evolution of nuclear auxin signalling.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:19493348" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020