Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Genetic differentiation, clinal variation and phenotypic associations with growth cessation across the Populus tremula photoperiodic pathway.

Identifieur interne : 003253 ( Main/Exploration ); précédent : 003252; suivant : 003254

Genetic differentiation, clinal variation and phenotypic associations with growth cessation across the Populus tremula photoperiodic pathway.

Auteurs : Xiao-Fei Ma [Suède] ; David Hall ; Katherine R St Onge ; Stefan Jansson ; P R K. Ingvarsson

Source :

RBID : pubmed:20805554

Descripteurs français

English descriptors

Abstract

Perennial plants monitor seasonal changes through changes in environmental conditions such as the quantity and quality of light. To ensure a correct initiation of critical developmental processes, such as the initiation and cessation of growth, plants have adapted to a spatially variable light regime and genes in the photoperiodic pathway have been implicated as likely sources for these adaptations. Here we examine genetic variation in genes from the photoperiodic pathway in Populus tremula (Salicaceae) for signatures diversifying selection in response to varying light regimes across a latitudinal gradient. We fail to identify any loci with unusually high levels of genetic differentiation among populations despite identifying four SNPs that show significant allele frequency clines with latitude. We do, however, observe large covariance in allelic effects across populations for growth cessation, a highly adaptive trait in P. tremula. High covariance in allelic effects is a signature compatible with diversifying selection along an environmental gradient. We also observe significantly higher heterogeneity in genetic differentiation among SNPs from the photoperiod genes than among SNPs from randomly chosen genes. This suggests that spatially variable selection could be affecting genes from the photoperiod pathway even if selection is not strong enough to cause individual loci to be identified as outliers. SNPs from three genes in the photoperiod pathway (PHYB2, LHY1, and LHY2) show significant associations with natural variation in growth cessation. Collectively these SNPs explain 10-15% of the phenotypic variation in growth cessation. Covariances in allelic effects across populations help explain an additional 5-7% of the phenotypic variation in growth cessation.

DOI: 10.1534/genetics.110.120873
PubMed: 20805554
PubMed Central: PMC2972289


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Genetic differentiation, clinal variation and phenotypic associations with growth cessation across the Populus tremula photoperiodic pathway.</title>
<author>
<name sortKey="Ma, Xiao Fei" sort="Ma, Xiao Fei" uniqKey="Ma X" first="Xiao-Fei" last="Ma">Xiao-Fei Ma</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Ecology and Environmental Science, Umeå Plant Science Centre, Umeå University, SE-90187 Umeå, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Ecology and Environmental Science, Umeå Plant Science Centre, Umeå University, SE-90187 Umeå</wicri:regionArea>
<wicri:noRegion>SE-90187 Umeå</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hall, David" sort="Hall, David" uniqKey="Hall D" first="David" last="Hall">David Hall</name>
</author>
<author>
<name sortKey="Onge, Katherine R St" sort="Onge, Katherine R St" uniqKey="Onge K" first="Katherine R St" last="Onge">Katherine R St Onge</name>
</author>
<author>
<name sortKey="Jansson, Stefan" sort="Jansson, Stefan" uniqKey="Jansson S" first="Stefan" last="Jansson">Stefan Jansson</name>
</author>
<author>
<name sortKey="Ingvarsson, P R K" sort="Ingvarsson, P R K" uniqKey="Ingvarsson P" first="P R K" last="Ingvarsson">P R K. Ingvarsson</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2010">2010</date>
<idno type="RBID">pubmed:20805554</idno>
<idno type="pmid">20805554</idno>
<idno type="doi">10.1534/genetics.110.120873</idno>
<idno type="pmc">PMC2972289</idno>
<idno type="wicri:Area/Main/Corpus">003081</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">003081</idno>
<idno type="wicri:Area/Main/Curation">003081</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">003081</idno>
<idno type="wicri:Area/Main/Exploration">003081</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Genetic differentiation, clinal variation and phenotypic associations with growth cessation across the Populus tremula photoperiodic pathway.</title>
<author>
<name sortKey="Ma, Xiao Fei" sort="Ma, Xiao Fei" uniqKey="Ma X" first="Xiao-Fei" last="Ma">Xiao-Fei Ma</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Ecology and Environmental Science, Umeå Plant Science Centre, Umeå University, SE-90187 Umeå, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Ecology and Environmental Science, Umeå Plant Science Centre, Umeå University, SE-90187 Umeå</wicri:regionArea>
<wicri:noRegion>SE-90187 Umeå</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hall, David" sort="Hall, David" uniqKey="Hall D" first="David" last="Hall">David Hall</name>
</author>
<author>
<name sortKey="Onge, Katherine R St" sort="Onge, Katherine R St" uniqKey="Onge K" first="Katherine R St" last="Onge">Katherine R St Onge</name>
</author>
<author>
<name sortKey="Jansson, Stefan" sort="Jansson, Stefan" uniqKey="Jansson S" first="Stefan" last="Jansson">Stefan Jansson</name>
</author>
<author>
<name sortKey="Ingvarsson, P R K" sort="Ingvarsson, P R K" uniqKey="Ingvarsson P" first="P R K" last="Ingvarsson">P R K. Ingvarsson</name>
</author>
</analytic>
<series>
<title level="j">Genetics</title>
<idno type="eISSN">1943-2631</idno>
<imprint>
<date when="2010" type="published">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Alleles (MeSH)</term>
<term>Computer Simulation (MeSH)</term>
<term>Ecosystem (MeSH)</term>
<term>Gene Frequency (genetics)</term>
<term>Genetic Variation (MeSH)</term>
<term>Genotype (MeSH)</term>
<term>Phenotype (MeSH)</term>
<term>Photoperiod (MeSH)</term>
<term>Polymorphism, Single Nucleotide (genetics)</term>
<term>Populus (genetics)</term>
<term>Populus (growth & development)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Allèles (MeSH)</term>
<term>Fréquence d'allèle (génétique)</term>
<term>Génotype (MeSH)</term>
<term>Photopériode (MeSH)</term>
<term>Phénotype (MeSH)</term>
<term>Polymorphisme de nucléotide simple (génétique)</term>
<term>Populus (croissance et développement)</term>
<term>Populus (génétique)</term>
<term>Simulation numérique (MeSH)</term>
<term>Variation génétique (MeSH)</term>
<term>Écosystème (MeSH)</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Gene Frequency</term>
<term>Polymorphism, Single Nucleotide</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Fréquence d'allèle</term>
<term>Polymorphisme de nucléotide simple</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Alleles</term>
<term>Computer Simulation</term>
<term>Ecosystem</term>
<term>Genetic Variation</term>
<term>Genotype</term>
<term>Phenotype</term>
<term>Photoperiod</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Allèles</term>
<term>Génotype</term>
<term>Photopériode</term>
<term>Phénotype</term>
<term>Simulation numérique</term>
<term>Variation génétique</term>
<term>Écosystème</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Perennial plants monitor seasonal changes through changes in environmental conditions such as the quantity and quality of light. To ensure a correct initiation of critical developmental processes, such as the initiation and cessation of growth, plants have adapted to a spatially variable light regime and genes in the photoperiodic pathway have been implicated as likely sources for these adaptations. Here we examine genetic variation in genes from the photoperiodic pathway in Populus tremula (Salicaceae) for signatures diversifying selection in response to varying light regimes across a latitudinal gradient. We fail to identify any loci with unusually high levels of genetic differentiation among populations despite identifying four SNPs that show significant allele frequency clines with latitude. We do, however, observe large covariance in allelic effects across populations for growth cessation, a highly adaptive trait in P. tremula. High covariance in allelic effects is a signature compatible with diversifying selection along an environmental gradient. We also observe significantly higher heterogeneity in genetic differentiation among SNPs from the photoperiod genes than among SNPs from randomly chosen genes. This suggests that spatially variable selection could be affecting genes from the photoperiod pathway even if selection is not strong enough to cause individual loci to be identified as outliers. SNPs from three genes in the photoperiod pathway (PHYB2, LHY1, and LHY2) show significant associations with natural variation in growth cessation. Collectively these SNPs explain 10-15% of the phenotypic variation in growth cessation. Covariances in allelic effects across populations help explain an additional 5-7% of the phenotypic variation in growth cessation.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">20805554</PMID>
<DateCompleted>
<Year>2011</Year>
<Month>02</Month>
<Day>15</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1943-2631</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>186</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2010</Year>
<Month>Nov</Month>
</PubDate>
</JournalIssue>
<Title>Genetics</Title>
<ISOAbbreviation>Genetics</ISOAbbreviation>
</Journal>
<ArticleTitle>Genetic differentiation, clinal variation and phenotypic associations with growth cessation across the Populus tremula photoperiodic pathway.</ArticleTitle>
<Pagination>
<MedlinePgn>1033-44</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1534/genetics.110.120873</ELocationID>
<Abstract>
<AbstractText>Perennial plants monitor seasonal changes through changes in environmental conditions such as the quantity and quality of light. To ensure a correct initiation of critical developmental processes, such as the initiation and cessation of growth, plants have adapted to a spatially variable light regime and genes in the photoperiodic pathway have been implicated as likely sources for these adaptations. Here we examine genetic variation in genes from the photoperiodic pathway in Populus tremula (Salicaceae) for signatures diversifying selection in response to varying light regimes across a latitudinal gradient. We fail to identify any loci with unusually high levels of genetic differentiation among populations despite identifying four SNPs that show significant allele frequency clines with latitude. We do, however, observe large covariance in allelic effects across populations for growth cessation, a highly adaptive trait in P. tremula. High covariance in allelic effects is a signature compatible with diversifying selection along an environmental gradient. We also observe significantly higher heterogeneity in genetic differentiation among SNPs from the photoperiod genes than among SNPs from randomly chosen genes. This suggests that spatially variable selection could be affecting genes from the photoperiod pathway even if selection is not strong enough to cause individual loci to be identified as outliers. SNPs from three genes in the photoperiod pathway (PHYB2, LHY1, and LHY2) show significant associations with natural variation in growth cessation. Collectively these SNPs explain 10-15% of the phenotypic variation in growth cessation. Covariances in allelic effects across populations help explain an additional 5-7% of the phenotypic variation in growth cessation.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Ma</LastName>
<ForeName>Xiao-Fei</ForeName>
<Initials>XF</Initials>
<AffiliationInfo>
<Affiliation>Department of Ecology and Environmental Science, Umeå Plant Science Centre, Umeå University, SE-90187 Umeå, Sweden.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hall</LastName>
<ForeName>David</ForeName>
<Initials>D</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Onge</LastName>
<ForeName>Katherine R St</ForeName>
<Initials>KR</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Jansson</LastName>
<ForeName>Stefan</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ingvarsson</LastName>
<ForeName>Pär K</ForeName>
<Initials>PK</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2010</Year>
<Month>08</Month>
<Day>30</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Genetics</MedlineTA>
<NlmUniqueID>0374636</NlmUniqueID>
<ISSNLinking>0016-6731</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000483" MajorTopicYN="N">Alleles</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003198" MajorTopicYN="N">Computer Simulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017753" MajorTopicYN="Y">Ecosystem</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005787" MajorTopicYN="N">Gene Frequency</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014644" MajorTopicYN="Y">Genetic Variation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005838" MajorTopicYN="N">Genotype</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010641" MajorTopicYN="N">Phenotype</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017440" MajorTopicYN="Y">Photoperiod</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020641" MajorTopicYN="N">Polymorphism, Single Nucleotide</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2010</Year>
<Month>9</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2010</Year>
<Month>9</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2011</Year>
<Month>2</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">20805554</ArticleId>
<ArticleId IdType="pii">genetics.110.120873</ArticleId>
<ArticleId IdType="doi">10.1534/genetics.110.120873</ArticleId>
<ArticleId IdType="pmc">PMC2972289</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant Physiol. 2007 May;144(1):248-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17369429</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Genet. 2004;38:87-117</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15568973</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genet Res. 1999 Dec;74(3):223-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10689800</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2003 Jul;164(3):1205-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12871925</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2000 Jun;155(2):945-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10835412</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 May 19;312(5776):1040-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16675663</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2000 Feb;154(2):837-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10655234</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2003 Feb;6(1):13-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12495746</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2004 Apr;13(4):969-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15012769</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 2007 Dec;61(12):2849-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17908247</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1973 May;74(1):175-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4711903</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Hum Genet. 2002 Mar;70(3):575-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11836648</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1982 May;101(1):139-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17246079</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Oct 23;104(43):16986-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17940010</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2008 Apr;17(8):1885-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18363667</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2008 Sep;180(1):329-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18716330</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2008 Sep;180(1):367-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18716337</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Aug 5;100(16):9440-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12883005</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2008 Apr;178(4):2217-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18245834</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2003 Sep;8(9):405-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13678904</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2009 Feb;18(3):375-402</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19143936</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009 Mar;181(4):808-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19140936</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2004;55:141-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15377217</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2000 May 5;288(5467):859-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10797009</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2001 Aug 3;293(5531):880-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11486091</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2006 Mar;172(3):1845-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16361240</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2004;32(3):e32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14973328</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2009 Oct 8;461(7265):747-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19812666</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2006 Feb;38(2):203-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16380716</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am Nat. 1998 Mar;151(3):283-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18811359</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2008 Oct;180(2):977-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18780740</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2002 Mar;160(3):1191-202</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11901133</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Ecol Evol. 2005 Aug;20(8):435-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16701414</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2007 Mar 30;3(3):e45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17397259</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Jun;132(2):732-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12805602</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2010 Apr;19(8):1638-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20345678</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Suède</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Hall, David" sort="Hall, David" uniqKey="Hall D" first="David" last="Hall">David Hall</name>
<name sortKey="Ingvarsson, P R K" sort="Ingvarsson, P R K" uniqKey="Ingvarsson P" first="P R K" last="Ingvarsson">P R K. Ingvarsson</name>
<name sortKey="Jansson, Stefan" sort="Jansson, Stefan" uniqKey="Jansson S" first="Stefan" last="Jansson">Stefan Jansson</name>
<name sortKey="Onge, Katherine R St" sort="Onge, Katherine R St" uniqKey="Onge K" first="Katherine R St" last="Onge">Katherine R St Onge</name>
</noCountry>
<country name="Suède">
<noRegion>
<name sortKey="Ma, Xiao Fei" sort="Ma, Xiao Fei" uniqKey="Ma X" first="Xiao-Fei" last="Ma">Xiao-Fei Ma</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003253 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 003253 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:20805554
   |texte=   Genetic differentiation, clinal variation and phenotypic associations with growth cessation across the Populus tremula photoperiodic pathway.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:20805554" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020