Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Identification of shared single copy nuclear genes in Arabidopsis, Populus, Vitis and Oryza and their phylogenetic utility across various taxonomic levels.

Identifieur interne : 003223 ( Main/Exploration ); précédent : 003222; suivant : 003224

Identification of shared single copy nuclear genes in Arabidopsis, Populus, Vitis and Oryza and their phylogenetic utility across various taxonomic levels.

Auteurs : Jill M. Duarte [États-Unis] ; P Kerr Wall ; Patrick P. Edger ; Lena L. Landherr ; Hong Ma ; J Chris Pires ; Jim Leebens-Mack ; Claude W. Depamphilis

Source :

RBID : pubmed:20181251

Descripteurs français

English descriptors

Abstract

BACKGROUND

Although the overwhelming majority of genes found in angiosperms are members of gene families, and both gene- and genome-duplication are pervasive forces in plant genomes, some genes are sufficiently distinct from all other genes in a genome that they can be operationally defined as 'single copy'. Using the gene clustering algorithm MCL-tribe, we have identified a set of 959 single copy genes that are shared single copy genes in the genomes of Arabidopsis thaliana, Populus trichocarpa, Vitis vinifera and Oryza sativa. To characterize these genes, we have performed a number of analyses examining GO annotations, coding sequence length, number of exons, number of domains, presence in distant lineages, such as Selaginella and Physcomitrella, and phylogenetic analysis to estimate copy number in other seed plants and to demonstrate their phylogenetic utility. We then provide examples of how these genes may be used in phylogenetic analyses to reconstruct organismal history, both by using extant coverage in EST databases for seed plants and de novo amplification via RT-PCR in the family Brassicaceae.

RESULTS

There are 959 single copy nuclear genes shared in Arabidopsis, Populus, Vitis and Oryza ["APVO SSC genes"]. The majority of these genes are also present in the Selaginella and Physcomitrella genomes. Public EST sets for 197 species suggest that most of these genes are present across a diverse collection of seed plants, and appear to exist as single or very low copy genes, though exceptions are seen in recently polyploid taxa and in lineages where there is significant evidence for a shared large-scale duplication event. Genes encoding proteins localized in organelles are more commonly single copy than expected by chance, but the evolutionary forces responsible for this bias are unknown.Regardless of the evolutionary mechanisms responsible for the large number of shared single copy genes in diverse flowering plant lineages, these genes are valuable for phylogenetic and comparative analyses. Eighteen of the APVO SSC single copy genes were amplified in the Brassicaceae using RT-PCR and directly sequenced. Alignments of these sequences provide improved resolution of Brassicaceae phylogeny compared to recent studies using plastid and ITS sequences. An analysis of sequences from 13 APVO SSC genes from 69 species of seed plants, derived mainly from public EST databases, yielded a phylogeny that was largely congruent with prior hypotheses based on multiple plastid sequences. Whereas single gene phylogenies that rely on EST sequences have limited bootstrap support as the result of limited sequence information, concatenated alignments result in phylogenetic trees with strong bootstrap support for already established relationships. Overall, these single copy nuclear genes are promising markers for phylogenetics, and contain a greater proportion of phylogenetically-informative sites than commonly used protein-coding sequences from the plastid or mitochondrial genomes.

CONCLUSIONS

Putatively orthologous, shared single copy nuclear genes provide a vast source of new evidence for plant phylogenetics, genome mapping, and other applications, as well as a substantial class of genes for which functional characterization is needed. Preliminary evidence indicates that many of the shared single copy nuclear genes identified in this study may be well suited as markers for addressing phylogenetic hypotheses at a variety of taxonomic levels.


DOI: 10.1186/1471-2148-10-61
PubMed: 20181251
PubMed Central: PMC2848037


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Identification of shared single copy nuclear genes in Arabidopsis, Populus, Vitis and Oryza and their phylogenetic utility across various taxonomic levels.</title>
<author>
<name sortKey="Duarte, Jill M" sort="Duarte, Jill M" uniqKey="Duarte J" first="Jill M" last="Duarte">Jill M. Duarte</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802</wicri:regionArea>
<placeName>
<region type="state">Pennsylvanie</region>
<settlement type="city">University Park (Pennsylvanie)</settlement>
</placeName>
<orgName type="university">Université d'État de Pennsylvanie</orgName>
</affiliation>
</author>
<author>
<name sortKey="Wall, P Kerr" sort="Wall, P Kerr" uniqKey="Wall P" first="P Kerr" last="Wall">P Kerr Wall</name>
</author>
<author>
<name sortKey="Edger, Patrick P" sort="Edger, Patrick P" uniqKey="Edger P" first="Patrick P" last="Edger">Patrick P. Edger</name>
</author>
<author>
<name sortKey="Landherr, Lena L" sort="Landherr, Lena L" uniqKey="Landherr L" first="Lena L" last="Landherr">Lena L. Landherr</name>
</author>
<author>
<name sortKey="Ma, Hong" sort="Ma, Hong" uniqKey="Ma H" first="Hong" last="Ma">Hong Ma</name>
</author>
<author>
<name sortKey="Pires, J Chris" sort="Pires, J Chris" uniqKey="Pires J" first="J Chris" last="Pires">J Chris Pires</name>
</author>
<author>
<name sortKey="Leebens Mack, Jim" sort="Leebens Mack, Jim" uniqKey="Leebens Mack J" first="Jim" last="Leebens-Mack">Jim Leebens-Mack</name>
</author>
<author>
<name sortKey="Depamphilis, Claude W" sort="Depamphilis, Claude W" uniqKey="Depamphilis C" first="Claude W" last="Depamphilis">Claude W. Depamphilis</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2010">2010</date>
<idno type="RBID">pubmed:20181251</idno>
<idno type="pmid">20181251</idno>
<idno type="doi">10.1186/1471-2148-10-61</idno>
<idno type="pmc">PMC2848037</idno>
<idno type="wicri:Area/Main/Corpus">003291</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">003291</idno>
<idno type="wicri:Area/Main/Curation">003291</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">003291</idno>
<idno type="wicri:Area/Main/Exploration">003291</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Identification of shared single copy nuclear genes in Arabidopsis, Populus, Vitis and Oryza and their phylogenetic utility across various taxonomic levels.</title>
<author>
<name sortKey="Duarte, Jill M" sort="Duarte, Jill M" uniqKey="Duarte J" first="Jill M" last="Duarte">Jill M. Duarte</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802</wicri:regionArea>
<placeName>
<region type="state">Pennsylvanie</region>
<settlement type="city">University Park (Pennsylvanie)</settlement>
</placeName>
<orgName type="university">Université d'État de Pennsylvanie</orgName>
</affiliation>
</author>
<author>
<name sortKey="Wall, P Kerr" sort="Wall, P Kerr" uniqKey="Wall P" first="P Kerr" last="Wall">P Kerr Wall</name>
</author>
<author>
<name sortKey="Edger, Patrick P" sort="Edger, Patrick P" uniqKey="Edger P" first="Patrick P" last="Edger">Patrick P. Edger</name>
</author>
<author>
<name sortKey="Landherr, Lena L" sort="Landherr, Lena L" uniqKey="Landherr L" first="Lena L" last="Landherr">Lena L. Landherr</name>
</author>
<author>
<name sortKey="Ma, Hong" sort="Ma, Hong" uniqKey="Ma H" first="Hong" last="Ma">Hong Ma</name>
</author>
<author>
<name sortKey="Pires, J Chris" sort="Pires, J Chris" uniqKey="Pires J" first="J Chris" last="Pires">J Chris Pires</name>
</author>
<author>
<name sortKey="Leebens Mack, Jim" sort="Leebens Mack, Jim" uniqKey="Leebens Mack J" first="Jim" last="Leebens-Mack">Jim Leebens-Mack</name>
</author>
<author>
<name sortKey="Depamphilis, Claude W" sort="Depamphilis, Claude W" uniqKey="Depamphilis C" first="Claude W" last="Depamphilis">Claude W. Depamphilis</name>
</author>
</analytic>
<series>
<title level="j">BMC evolutionary biology</title>
<idno type="eISSN">1471-2148</idno>
<imprint>
<date when="2010" type="published">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Arabidopsis (genetics)</term>
<term>Cell Nucleus (genetics)</term>
<term>Expressed Sequence Tags (MeSH)</term>
<term>Gene Dosage (MeSH)</term>
<term>Genes, Plant (MeSH)</term>
<term>Genome, Plant (MeSH)</term>
<term>Magnoliopsida (genetics)</term>
<term>Oryza (genetics)</term>
<term>Phylogeny (MeSH)</term>
<term>Populus (genetics)</term>
<term>Vitis (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Arabidopsis (génétique)</term>
<term>Dosage génique (MeSH)</term>
<term>Gènes de plante (MeSH)</term>
<term>Génome végétal (MeSH)</term>
<term>Magnoliopsida (génétique)</term>
<term>Noyau de la cellule (génétique)</term>
<term>Oryza (génétique)</term>
<term>Phylogenèse (MeSH)</term>
<term>Populus (génétique)</term>
<term>Vitis (génétique)</term>
<term>Étiquettes de séquences exprimées (MeSH)</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Arabidopsis</term>
<term>Cell Nucleus</term>
<term>Magnoliopsida</term>
<term>Oryza</term>
<term>Populus</term>
<term>Vitis</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Arabidopsis</term>
<term>Magnoliopsida</term>
<term>Noyau de la cellule</term>
<term>Oryza</term>
<term>Populus</term>
<term>Vitis</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Expressed Sequence Tags</term>
<term>Gene Dosage</term>
<term>Genes, Plant</term>
<term>Genome, Plant</term>
<term>Phylogeny</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Dosage génique</term>
<term>Gènes de plante</term>
<term>Génome végétal</term>
<term>Phylogenèse</term>
<term>Étiquettes de séquences exprimées</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>Although the overwhelming majority of genes found in angiosperms are members of gene families, and both gene- and genome-duplication are pervasive forces in plant genomes, some genes are sufficiently distinct from all other genes in a genome that they can be operationally defined as 'single copy'. Using the gene clustering algorithm MCL-tribe, we have identified a set of 959 single copy genes that are shared single copy genes in the genomes of Arabidopsis thaliana, Populus trichocarpa, Vitis vinifera and Oryza sativa. To characterize these genes, we have performed a number of analyses examining GO annotations, coding sequence length, number of exons, number of domains, presence in distant lineages, such as Selaginella and Physcomitrella, and phylogenetic analysis to estimate copy number in other seed plants and to demonstrate their phylogenetic utility. We then provide examples of how these genes may be used in phylogenetic analyses to reconstruct organismal history, both by using extant coverage in EST databases for seed plants and de novo amplification via RT-PCR in the family Brassicaceae.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>There are 959 single copy nuclear genes shared in Arabidopsis, Populus, Vitis and Oryza ["APVO SSC genes"]. The majority of these genes are also present in the Selaginella and Physcomitrella genomes. Public EST sets for 197 species suggest that most of these genes are present across a diverse collection of seed plants, and appear to exist as single or very low copy genes, though exceptions are seen in recently polyploid taxa and in lineages where there is significant evidence for a shared large-scale duplication event. Genes encoding proteins localized in organelles are more commonly single copy than expected by chance, but the evolutionary forces responsible for this bias are unknown.Regardless of the evolutionary mechanisms responsible for the large number of shared single copy genes in diverse flowering plant lineages, these genes are valuable for phylogenetic and comparative analyses. Eighteen of the APVO SSC single copy genes were amplified in the Brassicaceae using RT-PCR and directly sequenced. Alignments of these sequences provide improved resolution of Brassicaceae phylogeny compared to recent studies using plastid and ITS sequences. An analysis of sequences from 13 APVO SSC genes from 69 species of seed plants, derived mainly from public EST databases, yielded a phylogeny that was largely congruent with prior hypotheses based on multiple plastid sequences. Whereas single gene phylogenies that rely on EST sequences have limited bootstrap support as the result of limited sequence information, concatenated alignments result in phylogenetic trees with strong bootstrap support for already established relationships. Overall, these single copy nuclear genes are promising markers for phylogenetics, and contain a greater proportion of phylogenetically-informative sites than commonly used protein-coding sequences from the plastid or mitochondrial genomes.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>Putatively orthologous, shared single copy nuclear genes provide a vast source of new evidence for plant phylogenetics, genome mapping, and other applications, as well as a substantial class of genes for which functional characterization is needed. Preliminary evidence indicates that many of the shared single copy nuclear genes identified in this study may be well suited as markers for addressing phylogenetic hypotheses at a variety of taxonomic levels.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">20181251</PMID>
<DateCompleted>
<Year>2010</Year>
<Month>04</Month>
<Day>12</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1471-2148</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>10</Volume>
<PubDate>
<Year>2010</Year>
<Month>Feb</Month>
<Day>24</Day>
</PubDate>
</JournalIssue>
<Title>BMC evolutionary biology</Title>
<ISOAbbreviation>BMC Evol Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>Identification of shared single copy nuclear genes in Arabidopsis, Populus, Vitis and Oryza and their phylogenetic utility across various taxonomic levels.</ArticleTitle>
<Pagination>
<MedlinePgn>61</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/1471-2148-10-61</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Although the overwhelming majority of genes found in angiosperms are members of gene families, and both gene- and genome-duplication are pervasive forces in plant genomes, some genes are sufficiently distinct from all other genes in a genome that they can be operationally defined as 'single copy'. Using the gene clustering algorithm MCL-tribe, we have identified a set of 959 single copy genes that are shared single copy genes in the genomes of Arabidopsis thaliana, Populus trichocarpa, Vitis vinifera and Oryza sativa. To characterize these genes, we have performed a number of analyses examining GO annotations, coding sequence length, number of exons, number of domains, presence in distant lineages, such as Selaginella and Physcomitrella, and phylogenetic analysis to estimate copy number in other seed plants and to demonstrate their phylogenetic utility. We then provide examples of how these genes may be used in phylogenetic analyses to reconstruct organismal history, both by using extant coverage in EST databases for seed plants and de novo amplification via RT-PCR in the family Brassicaceae.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">There are 959 single copy nuclear genes shared in Arabidopsis, Populus, Vitis and Oryza ["APVO SSC genes"]. The majority of these genes are also present in the Selaginella and Physcomitrella genomes. Public EST sets for 197 species suggest that most of these genes are present across a diverse collection of seed plants, and appear to exist as single or very low copy genes, though exceptions are seen in recently polyploid taxa and in lineages where there is significant evidence for a shared large-scale duplication event. Genes encoding proteins localized in organelles are more commonly single copy than expected by chance, but the evolutionary forces responsible for this bias are unknown.Regardless of the evolutionary mechanisms responsible for the large number of shared single copy genes in diverse flowering plant lineages, these genes are valuable for phylogenetic and comparative analyses. Eighteen of the APVO SSC single copy genes were amplified in the Brassicaceae using RT-PCR and directly sequenced. Alignments of these sequences provide improved resolution of Brassicaceae phylogeny compared to recent studies using plastid and ITS sequences. An analysis of sequences from 13 APVO SSC genes from 69 species of seed plants, derived mainly from public EST databases, yielded a phylogeny that was largely congruent with prior hypotheses based on multiple plastid sequences. Whereas single gene phylogenies that rely on EST sequences have limited bootstrap support as the result of limited sequence information, concatenated alignments result in phylogenetic trees with strong bootstrap support for already established relationships. Overall, these single copy nuclear genes are promising markers for phylogenetics, and contain a greater proportion of phylogenetically-informative sites than commonly used protein-coding sequences from the plastid or mitochondrial genomes.</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">Putatively orthologous, shared single copy nuclear genes provide a vast source of new evidence for plant phylogenetics, genome mapping, and other applications, as well as a substantial class of genes for which functional characterization is needed. Preliminary evidence indicates that many of the shared single copy nuclear genes identified in this study may be well suited as markers for addressing phylogenetic hypotheses at a variety of taxonomic levels.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Duarte</LastName>
<ForeName>Jill M</ForeName>
<Initials>JM</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wall</LastName>
<ForeName>P Kerr</ForeName>
<Initials>PK</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Edger</LastName>
<ForeName>Patrick P</ForeName>
<Initials>PP</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Landherr</LastName>
<ForeName>Lena L</ForeName>
<Initials>LL</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ma</LastName>
<ForeName>Hong</ForeName>
<Initials>H</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Pires</LastName>
<ForeName>J Chris</ForeName>
<Initials>JC</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Leebens-Mack</LastName>
<ForeName>Jim</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>dePamphilis</LastName>
<ForeName>Claude W</ForeName>
<Initials>CW</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2010</Year>
<Month>02</Month>
<Day>24</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>BMC Evol Biol</MedlineTA>
<NlmUniqueID>100966975</NlmUniqueID>
<ISSNLinking>1471-2148</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D017360" MajorTopicYN="N">Arabidopsis</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002467" MajorTopicYN="N">Cell Nucleus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020224" MajorTopicYN="N">Expressed Sequence Tags</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018628" MajorTopicYN="Y">Gene Dosage</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017343" MajorTopicYN="Y">Genes, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018745" MajorTopicYN="N">Genome, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019684" MajorTopicYN="N">Magnoliopsida</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012275" MajorTopicYN="N">Oryza</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="N">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D027843" MajorTopicYN="N">Vitis</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2008</Year>
<Month>07</Month>
<Day>31</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2010</Year>
<Month>02</Month>
<Day>24</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2010</Year>
<Month>2</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2010</Year>
<Month>2</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2010</Year>
<Month>4</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">20181251</ArticleId>
<ArticleId IdType="pii">1471-2148-10-61</ArticleId>
<ArticleId IdType="doi">10.1186/1471-2148-10-61</ArticleId>
<ArticleId IdType="pmc">PMC2848037</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Genetics. 1999 Apr;151(4):1531-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10101175</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Apr 12;102(15):5454-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15800040</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 Feb;19(2):395-402</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17293565</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Dec 4;104(49):19363-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18048334</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2007 Mar;24(3):679-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17179139</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Philos Trans R Soc Lond B Biol Sci. 2006 Jan 29;361(1465):211-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16553318</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1990 May;87(10):3821-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2111018</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1994 Sep 27;91(20):9554-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7937804</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1999 Oct 29;286(5441):947-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10542147</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioessays. 2004 Jan;26(1):50-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14696040</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2008 Jan;36(Database issue):D970-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18073194</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2008 Apr 10;452(7188):745-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18322464</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1995 Aug 15;92(17):7719-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7644483</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2000 Nov 3;290(5493):972-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11062127</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Evol Biol. 2004 Jul 6;4:22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15238160</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2006 May;18(5):1152-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16617098</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Genet. 2002 Dec;18(12):606-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12446138</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chromosome Res. 2009;17(5):699-717</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19802709</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2006 May;23(5):1068-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16510556</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Dec 4;104(49):19369-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18048330</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Bot. 2005 Dec;92(12):2086-100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21646125</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Phylogenet Evol. 2007 Jun;43(3):1040-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17208463</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Phylogenet Evol. 2004 May;31(2):780-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15062810</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Oct 15;99(21):13627-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12374856</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Phylogenet Evol. 2001 Jun;19(3):409-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11399149</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2004 Aug 19;5:113</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15318951</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2006 Jun;16(6):738-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16702410</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2006 Feb;23(2):245-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16207937</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Phylogenet Evol. 2004 Jan;30(1):13-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15022754</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009;182(1):272-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19192190</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2002 Aug;49(6):567-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12081365</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Dyn. 2008;4:25-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18756075</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2005 Feb;22(2):317-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15496557</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2007 Jan;35(Database issue):D846-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17088284</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2003 Aug 1;31(15):4632-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12888524</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2008 Apr 24;452(7190):991-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18432245</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2006 Nov;23(11):2142-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16916944</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Ecol Evol. 2005 Nov;20(11):591-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16701441</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Bot. 2003 Dec;90(12):1758-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21653353</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 1998 Dec;15(12):1658-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9866201</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Bot. 2006 Apr;93(4):607-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21646222</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2002 Jul;14(7):1457-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12119367</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2006 Feb;23(2):268-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16237206</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1998 Sep;150(1):403-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9725856</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2006 Mar;7(3):211-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16485020</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome. 2004 Oct;47(5):868-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15499401</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Development. 2003 Jun;130(11):2385-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12702653</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 1997 Feb;6(2):113-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9061938</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Dec 11;104(50):19920-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18056801</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 Jun 13;300(5626):1703-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12805537</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2002 Mar-Apr;48(5-6):805-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11999851</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1989 Dec;86(23):9355-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2531898</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2006 Nov;174(3):1407-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16951058</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2004 Jul;16(7):1667-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15208399</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Phylogenet Evol. 1999 Oct;13(1):20-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10508536</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2006 Jan;23(1):107-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16151182</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Apr 15;100(8):4649-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12665616</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Feb 21;103(8):2730-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16467140</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2008 Oct 3;322(5898):86-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18832643</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Phylogenet Evol. 2003 Nov;29(2):203-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13678677</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2000 Dec 15;290(5499):2114-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11118139</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1990 Oct 5;215(3):403-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2231712</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Phylogenet Evol. 2006 Apr;39(1):124-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16314114</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2000 May;22(3):235-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10849341</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Sep 15;313(5793):1596-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16973872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2005 Feb;3(2):e38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15685292</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2007 May-Jun;1769(5-6):422-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17276527</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 1998;14(9):817-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9918953</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2005 Apr;15(4):516-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15781573</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1997 Nov;147(3):1381-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9383078</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2002 Apr 1;30(7):1575-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11917018</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Genet. 2003 Mar;19(3):141-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12615008</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int Microbiol. 2000 Mar;3(1):9-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10963328</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Genet. 2008 Aug;24(8):390-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18585818</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Phylogenet Evol. 1999 Aug;12(3):310-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10413625</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Jun 29;101(26):9903-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15161969</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetica. 2002 May;115(1):37-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12188047</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Crit Rev Biochem Mol Biol. 2002;37(3):121-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12139440</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Hered. 2005 May-Jun;96(3):225-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15695551</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Biol. 2001 Jun 15;234(2):275-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11396999</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Genet. 2000;34:401-437</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11092833</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1994 Nov 11;22(22):4673-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7984417</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Res. 2004 Jun;117(3):229-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15138844</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Bot. 2002 Nov;89(11):1826-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21665611</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Genet. 2005 Jan;21(1):33-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15680512</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 Mar 27;422(6930):433-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12660784</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1997 Sep 1;25(17):3389-402</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9254694</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2004 Feb;166(2):1011-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15020484</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2007 Sep 27;449(7161):463-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17721507</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Pennsylvanie</li>
</region>
<settlement>
<li>University Park (Pennsylvanie)</li>
</settlement>
<orgName>
<li>Université d'État de Pennsylvanie</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Depamphilis, Claude W" sort="Depamphilis, Claude W" uniqKey="Depamphilis C" first="Claude W" last="Depamphilis">Claude W. Depamphilis</name>
<name sortKey="Edger, Patrick P" sort="Edger, Patrick P" uniqKey="Edger P" first="Patrick P" last="Edger">Patrick P. Edger</name>
<name sortKey="Landherr, Lena L" sort="Landherr, Lena L" uniqKey="Landherr L" first="Lena L" last="Landherr">Lena L. Landherr</name>
<name sortKey="Leebens Mack, Jim" sort="Leebens Mack, Jim" uniqKey="Leebens Mack J" first="Jim" last="Leebens-Mack">Jim Leebens-Mack</name>
<name sortKey="Ma, Hong" sort="Ma, Hong" uniqKey="Ma H" first="Hong" last="Ma">Hong Ma</name>
<name sortKey="Pires, J Chris" sort="Pires, J Chris" uniqKey="Pires J" first="J Chris" last="Pires">J Chris Pires</name>
<name sortKey="Wall, P Kerr" sort="Wall, P Kerr" uniqKey="Wall P" first="P Kerr" last="Wall">P Kerr Wall</name>
</noCountry>
<country name="États-Unis">
<region name="Pennsylvanie">
<name sortKey="Duarte, Jill M" sort="Duarte, Jill M" uniqKey="Duarte J" first="Jill M" last="Duarte">Jill M. Duarte</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003223 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 003223 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:20181251
   |texte=   Identification of shared single copy nuclear genes in Arabidopsis, Populus, Vitis and Oryza and their phylogenetic utility across various taxonomic levels.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:20181251" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020