Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Bioconversion of Agricultural Waste to Ethanol by SSF Using Recombinant Cellulase from Clostridium thermocellum.

Identifieur interne : 002F85 ( Main/Exploration ); précédent : 002F84; suivant : 002F86

Bioconversion of Agricultural Waste to Ethanol by SSF Using Recombinant Cellulase from Clostridium thermocellum.

Auteurs : Ruchi Mutreja [Inde] ; Debasish Das ; Dinesh Goyal ; Arun Goyal

Source :

RBID : pubmed:21811671

Abstract

The effect of different pretreatment methods, temperature, and enzyme concentration on ethanol production from 8 lignocellulosic agrowaste by simultaneous saccharification and fermentation (SSF) using recombinant cellulase and Saccharomyces cerevisiae were studied. Recombinant cellulase was isolated from E. coli BL21 cells transformed with CtLic26A-Cel5-CBM11 full-length gene from Clostridium thermocellum and produced in both batch and fed-batch processes. The maximum cell OD and specific activity in batch mode were 1.6 and 1.91 U/mg, respectively, whereas in the fed-batch mode, maximum cell OD and specific activity were 3.8 and 3.5 U/mg, respectively, displaying a 2-fold increase. Eight substrates, Syzygium cumini (jamun), Azadirachta indica (neem), Saracens indica (asoka), bambusa dendrocalmus (bamboo), Populas nigra (poplar), Achnatherum hymenoides (wild grass), Eucalyptus marginata (eucalyptus), and Mangifera indica (mango), were subjected to SSF. Of three pretreatments, acid, alkali, and steam explosion, acid pretreatment Syzygium cumini (Jamun) at 30°C gave maximum ethanol yield of 1.42 g/L.

DOI: 10.4061/2011/340279
PubMed: 21811671
PubMed Central: PMC3146998


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Bioconversion of Agricultural Waste to Ethanol by SSF Using Recombinant Cellulase from Clostridium thermocellum.</title>
<author>
<name sortKey="Mutreja, Ruchi" sort="Mutreja, Ruchi" uniqKey="Mutreja R" first="Ruchi" last="Mutreja">Ruchi Mutreja</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Department of Biotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam</wicri:regionArea>
<wicri:noRegion>Assam</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Das, Debasish" sort="Das, Debasish" uniqKey="Das D" first="Debasish" last="Das">Debasish Das</name>
</author>
<author>
<name sortKey="Goyal, Dinesh" sort="Goyal, Dinesh" uniqKey="Goyal D" first="Dinesh" last="Goyal">Dinesh Goyal</name>
</author>
<author>
<name sortKey="Goyal, Arun" sort="Goyal, Arun" uniqKey="Goyal A" first="Arun" last="Goyal">Arun Goyal</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2011">2011</date>
<idno type="RBID">pubmed:21811671</idno>
<idno type="pmid">21811671</idno>
<idno type="doi">10.4061/2011/340279</idno>
<idno type="pmc">PMC3146998</idno>
<idno type="wicri:Area/Main/Corpus">002D28</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002D28</idno>
<idno type="wicri:Area/Main/Curation">002D28</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002D28</idno>
<idno type="wicri:Area/Main/Exploration">002D28</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Bioconversion of Agricultural Waste to Ethanol by SSF Using Recombinant Cellulase from Clostridium thermocellum.</title>
<author>
<name sortKey="Mutreja, Ruchi" sort="Mutreja, Ruchi" uniqKey="Mutreja R" first="Ruchi" last="Mutreja">Ruchi Mutreja</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.</nlm:affiliation>
<country xml:lang="fr">Inde</country>
<wicri:regionArea>Department of Biotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam</wicri:regionArea>
<wicri:noRegion>Assam</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Das, Debasish" sort="Das, Debasish" uniqKey="Das D" first="Debasish" last="Das">Debasish Das</name>
</author>
<author>
<name sortKey="Goyal, Dinesh" sort="Goyal, Dinesh" uniqKey="Goyal D" first="Dinesh" last="Goyal">Dinesh Goyal</name>
</author>
<author>
<name sortKey="Goyal, Arun" sort="Goyal, Arun" uniqKey="Goyal A" first="Arun" last="Goyal">Arun Goyal</name>
</author>
</analytic>
<series>
<title level="j">Enzyme research</title>
<idno type="eISSN">2090-0414</idno>
<imprint>
<date when="2011" type="published">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The effect of different pretreatment methods, temperature, and enzyme concentration on ethanol production from 8 lignocellulosic agrowaste by simultaneous saccharification and fermentation (SSF) using recombinant cellulase and Saccharomyces cerevisiae were studied. Recombinant cellulase was isolated from E. coli BL21 cells transformed with CtLic26A-Cel5-CBM11 full-length gene from Clostridium thermocellum and produced in both batch and fed-batch processes. The maximum cell OD and specific activity in batch mode were 1.6 and 1.91 U/mg, respectively, whereas in the fed-batch mode, maximum cell OD and specific activity were 3.8 and 3.5 U/mg, respectively, displaying a 2-fold increase. Eight substrates, Syzygium cumini (jamun), Azadirachta indica (neem), Saracens indica (asoka), bambusa dendrocalmus (bamboo), Populas nigra (poplar), Achnatherum hymenoides (wild grass), Eucalyptus marginata (eucalyptus), and Mangifera indica (mango), were subjected to SSF. Of three pretreatments, acid, alkali, and steam explosion, acid pretreatment Syzygium cumini (Jamun) at 30°C gave maximum ethanol yield of 1.42 g/L.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">21811671</PMID>
<DateCompleted>
<Year>2011</Year>
<Month>11</Month>
<Day>10</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>29</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">2090-0414</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>2011</Volume>
<PubDate>
<Year>2011</Year>
</PubDate>
</JournalIssue>
<Title>Enzyme research</Title>
<ISOAbbreviation>Enzyme Res</ISOAbbreviation>
</Journal>
<ArticleTitle>Bioconversion of Agricultural Waste to Ethanol by SSF Using Recombinant Cellulase from Clostridium thermocellum.</ArticleTitle>
<Pagination>
<MedlinePgn>340279</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.4061/2011/340279</ELocationID>
<Abstract>
<AbstractText>The effect of different pretreatment methods, temperature, and enzyme concentration on ethanol production from 8 lignocellulosic agrowaste by simultaneous saccharification and fermentation (SSF) using recombinant cellulase and Saccharomyces cerevisiae were studied. Recombinant cellulase was isolated from E. coli BL21 cells transformed with CtLic26A-Cel5-CBM11 full-length gene from Clostridium thermocellum and produced in both batch and fed-batch processes. The maximum cell OD and specific activity in batch mode were 1.6 and 1.91 U/mg, respectively, whereas in the fed-batch mode, maximum cell OD and specific activity were 3.8 and 3.5 U/mg, respectively, displaying a 2-fold increase. Eight substrates, Syzygium cumini (jamun), Azadirachta indica (neem), Saracens indica (asoka), bambusa dendrocalmus (bamboo), Populas nigra (poplar), Achnatherum hymenoides (wild grass), Eucalyptus marginata (eucalyptus), and Mangifera indica (mango), were subjected to SSF. Of three pretreatments, acid, alkali, and steam explosion, acid pretreatment Syzygium cumini (Jamun) at 30°C gave maximum ethanol yield of 1.42 g/L.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Mutreja</LastName>
<ForeName>Ruchi</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Department of Biotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Das</LastName>
<ForeName>Debasish</ForeName>
<Initials>D</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Goyal</LastName>
<ForeName>Dinesh</ForeName>
<Initials>D</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Goyal</LastName>
<ForeName>Arun</ForeName>
<Initials>A</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2011</Year>
<Month>07</Month>
<Day>24</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Enzyme Res</MedlineTA>
<NlmUniqueID>101536666</NlmUniqueID>
<ISSNLinking>2090-0414</ISSNLinking>
</MedlineJournalInfo>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2011</Year>
<Month>03</Month>
<Day>01</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2011</Year>
<Month>05</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2011</Year>
<Month>05</Month>
<Day>21</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2011</Year>
<Month>8</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2011</Year>
<Month>8</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2011</Year>
<Month>8</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">21811671</ArticleId>
<ArticleId IdType="doi">10.4061/2011/340279</ArticleId>
<ArticleId IdType="pmc">PMC3146998</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 2005 Sep 23;280(38):32761-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15987675</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2007 Nov;98(16):3026-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17142038</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Biofuels. 2009 Jul 06;2:14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19580644</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Ind Microbiol Biotechnol. 2009 Feb;36(2):285-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18989713</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Indian J Microbiol. 2007 Dec;47(4):310-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23100683</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Crit Rev Food Sci Nutr. 2004;44(2):77-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15116755</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Biofuels. 2008 May 01;1(1):7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18471273</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2009 Feb;100(3):1238-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19000863</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1976 May 7;72:248-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">942051</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Biochem Biotechnol. 2006 Spring;129-132:631-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16915675</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Inde</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Das, Debasish" sort="Das, Debasish" uniqKey="Das D" first="Debasish" last="Das">Debasish Das</name>
<name sortKey="Goyal, Arun" sort="Goyal, Arun" uniqKey="Goyal A" first="Arun" last="Goyal">Arun Goyal</name>
<name sortKey="Goyal, Dinesh" sort="Goyal, Dinesh" uniqKey="Goyal D" first="Dinesh" last="Goyal">Dinesh Goyal</name>
</noCountry>
<country name="Inde">
<noRegion>
<name sortKey="Mutreja, Ruchi" sort="Mutreja, Ruchi" uniqKey="Mutreja R" first="Ruchi" last="Mutreja">Ruchi Mutreja</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002F85 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002F85 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:21811671
   |texte=   Bioconversion of Agricultural Waste to Ethanol by SSF Using Recombinant Cellulase from Clostridium thermocellum.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:21811671" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020