Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Can forest trees compensate for stress-generated growth losses by induced production of volatile compounds?

Identifieur interne : 002F75 ( Main/Exploration ); précédent : 002F74; suivant : 002F76

Can forest trees compensate for stress-generated growth losses by induced production of volatile compounds?

Auteurs : Jarmo K. Holopainen [Finlande]

Source :

RBID : pubmed:22112623

Descripteurs français

English descriptors

Abstract

Plants produce a variety of volatile organic compounds (VOCs). Under abiotic and biotic stresses, the number and amount of produced compounds can increase. Due to their long life span and large size, trees can produce biogenic VOCs (BVOCs) in much higher amounts than many other plants. It has been suggested that at cellular and tree physiological levels, induced production of VOCs is aimed at improving plant resistance to damage by reactive oxygen species generated by multiple abiotic stresses. In the few reported cases when biosynthesis of plant volatiles is inhibited or enhanced, the observed response to stress can be attributed to plant volatiles. Reported increase, e.g., in photosynthesis has mostly ranged between 5 and 50%. A comprehensive model to explain similar induction of VOCs under multiple biotic stresses is not yet available. As a result of pathogen or herbivore attack on forest trees, the induced production of VOCs is localized to the damage site but systemic induction of emissions has also been detected. These volatiles can affect fungal pathogens and the arrival rate of herbivorous insects on damaged trees, but also act as signalling compounds to maintain the trophic cascades that may improve tree fitness by improved efficiency of herbivore natural enemies. On the forest scale, biotic induction of VOC synthesis and release leads to an amplified flow of BVOCs in atmospheric reactions, which in atmospheres rich in oxides of nitrogen (NOx) results in ozone formation, and in low NOx atmospheres results in oxidation of VOCs, removal in ozone from the troposphere and the resulting formation of biogenic secondary organic aerosol (SOA) particles. I will summarize recent advances in the understanding of stress-induced VOC emissions from trees, with special focus on Populus spp. Particular importance is given to the ecological and atmospheric feedback systems based on BVOCs and biogenic SOA formation.

DOI: 10.1093/treephys/tpr111
PubMed: 22112623


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Can forest trees compensate for stress-generated growth losses by induced production of volatile compounds?</title>
<author>
<name sortKey="Holopainen, Jarmo K" sort="Holopainen, Jarmo K" uniqKey="Holopainen J" first="Jarmo K" last="Holopainen">Jarmo K. Holopainen</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Environmental Science, University of Eastern Finland, FI-70211 Kuopio, Finland. Jarmo.Holopainen@uef.fi</nlm:affiliation>
<country xml:lang="fr">Finlande</country>
<wicri:regionArea>Department of Environmental Science, University of Eastern Finland, FI-70211 Kuopio</wicri:regionArea>
<wicri:noRegion>FI-70211 Kuopio</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2011">2011</date>
<idno type="RBID">pubmed:22112623</idno>
<idno type="pmid">22112623</idno>
<idno type="doi">10.1093/treephys/tpr111</idno>
<idno type="wicri:Area/Main/Corpus">002C19</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002C19</idno>
<idno type="wicri:Area/Main/Curation">002C19</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002C19</idno>
<idno type="wicri:Area/Main/Exploration">002C19</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Can forest trees compensate for stress-generated growth losses by induced production of volatile compounds?</title>
<author>
<name sortKey="Holopainen, Jarmo K" sort="Holopainen, Jarmo K" uniqKey="Holopainen J" first="Jarmo K" last="Holopainen">Jarmo K. Holopainen</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Environmental Science, University of Eastern Finland, FI-70211 Kuopio, Finland. Jarmo.Holopainen@uef.fi</nlm:affiliation>
<country xml:lang="fr">Finlande</country>
<wicri:regionArea>Department of Environmental Science, University of Eastern Finland, FI-70211 Kuopio</wicri:regionArea>
<wicri:noRegion>FI-70211 Kuopio</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Tree physiology</title>
<idno type="eISSN">1758-4469</idno>
<imprint>
<date when="2011" type="published">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Stress, Physiological (MeSH)</term>
<term>Trees (growth & development)</term>
<term>Trees (metabolism)</term>
<term>Volatile Organic Compounds (classification)</term>
<term>Volatile Organic Compounds (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux (MeSH)</term>
<term>Arbres (croissance et développement)</term>
<term>Arbres (métabolisme)</term>
<term>Composés organiques volatils (classification)</term>
<term>Composés organiques volatils (métabolisme)</term>
<term>Stress physiologique (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="classification" xml:lang="en">
<term>Volatile Organic Compounds</term>
</keywords>
<keywords scheme="MESH" qualifier="classification" xml:lang="fr">
<term>Composés organiques volatils</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Arbres</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Trees</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Trees</term>
<term>Volatile Organic Compounds</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Arbres</term>
<term>Composés organiques volatils</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Stress, Physiological</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Stress physiologique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Plants produce a variety of volatile organic compounds (VOCs). Under abiotic and biotic stresses, the number and amount of produced compounds can increase. Due to their long life span and large size, trees can produce biogenic VOCs (BVOCs) in much higher amounts than many other plants. It has been suggested that at cellular and tree physiological levels, induced production of VOCs is aimed at improving plant resistance to damage by reactive oxygen species generated by multiple abiotic stresses. In the few reported cases when biosynthesis of plant volatiles is inhibited or enhanced, the observed response to stress can be attributed to plant volatiles. Reported increase, e.g., in photosynthesis has mostly ranged between 5 and 50%. A comprehensive model to explain similar induction of VOCs under multiple biotic stresses is not yet available. As a result of pathogen or herbivore attack on forest trees, the induced production of VOCs is localized to the damage site but systemic induction of emissions has also been detected. These volatiles can affect fungal pathogens and the arrival rate of herbivorous insects on damaged trees, but also act as signalling compounds to maintain the trophic cascades that may improve tree fitness by improved efficiency of herbivore natural enemies. On the forest scale, biotic induction of VOC synthesis and release leads to an amplified flow of BVOCs in atmospheric reactions, which in atmospheres rich in oxides of nitrogen (NOx) results in ozone formation, and in low NOx atmospheres results in oxidation of VOCs, removal in ozone from the troposphere and the resulting formation of biogenic secondary organic aerosol (SOA) particles. I will summarize recent advances in the understanding of stress-induced VOC emissions from trees, with special focus on Populus spp. Particular importance is given to the ecological and atmospheric feedback systems based on BVOCs and biogenic SOA formation.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">22112623</PMID>
<DateCompleted>
<Year>2012</Year>
<Month>05</Month>
<Day>18</Day>
</DateCompleted>
<DateRevised>
<Year>2011</Year>
<Month>12</Month>
<Day>14</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1758-4469</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>31</Volume>
<Issue>12</Issue>
<PubDate>
<Year>2011</Year>
<Month>Dec</Month>
</PubDate>
</JournalIssue>
<Title>Tree physiology</Title>
<ISOAbbreviation>Tree Physiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Can forest trees compensate for stress-generated growth losses by induced production of volatile compounds?</ArticleTitle>
<Pagination>
<MedlinePgn>1356-77</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1093/treephys/tpr111</ELocationID>
<Abstract>
<AbstractText>Plants produce a variety of volatile organic compounds (VOCs). Under abiotic and biotic stresses, the number and amount of produced compounds can increase. Due to their long life span and large size, trees can produce biogenic VOCs (BVOCs) in much higher amounts than many other plants. It has been suggested that at cellular and tree physiological levels, induced production of VOCs is aimed at improving plant resistance to damage by reactive oxygen species generated by multiple abiotic stresses. In the few reported cases when biosynthesis of plant volatiles is inhibited or enhanced, the observed response to stress can be attributed to plant volatiles. Reported increase, e.g., in photosynthesis has mostly ranged between 5 and 50%. A comprehensive model to explain similar induction of VOCs under multiple biotic stresses is not yet available. As a result of pathogen or herbivore attack on forest trees, the induced production of VOCs is localized to the damage site but systemic induction of emissions has also been detected. These volatiles can affect fungal pathogens and the arrival rate of herbivorous insects on damaged trees, but also act as signalling compounds to maintain the trophic cascades that may improve tree fitness by improved efficiency of herbivore natural enemies. On the forest scale, biotic induction of VOC synthesis and release leads to an amplified flow of BVOCs in atmospheric reactions, which in atmospheres rich in oxides of nitrogen (NOx) results in ozone formation, and in low NOx atmospheres results in oxidation of VOCs, removal in ozone from the troposphere and the resulting formation of biogenic secondary organic aerosol (SOA) particles. I will summarize recent advances in the understanding of stress-induced VOC emissions from trees, with special focus on Populus spp. Particular importance is given to the ecological and atmospheric feedback systems based on BVOCs and biogenic SOA formation.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Holopainen</LastName>
<ForeName>Jarmo K</ForeName>
<Initials>JK</Initials>
<AffiliationInfo>
<Affiliation>Department of Environmental Science, University of Eastern Finland, FI-70211 Kuopio, Finland. Jarmo.Holopainen@uef.fi</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2011</Year>
<Month>11</Month>
<Day>22</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Canada</Country>
<MedlineTA>Tree Physiol</MedlineTA>
<NlmUniqueID>100955338</NlmUniqueID>
<ISSNLinking>0829-318X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D055549">Volatile Organic Compounds</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013312" MajorTopicYN="Y">Stress, Physiological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014197" MajorTopicYN="N">Trees</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055549" MajorTopicYN="N">Volatile Organic Compounds</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2011</Year>
<Month>11</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2011</Year>
<Month>11</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2012</Year>
<Month>5</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">22112623</ArticleId>
<ArticleId IdType="pii">tpr111</ArticleId>
<ArticleId IdType="doi">10.1093/treephys/tpr111</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Finlande</li>
</country>
</list>
<tree>
<country name="Finlande">
<noRegion>
<name sortKey="Holopainen, Jarmo K" sort="Holopainen, Jarmo K" uniqKey="Holopainen J" first="Jarmo K" last="Holopainen">Jarmo K. Holopainen</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002F75 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002F75 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:22112623
   |texte=   Can forest trees compensate for stress-generated growth losses by induced production of volatile compounds?
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:22112623" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020