Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Functional and expressional analyses of PmDAM genes associated with endodormancy in Japanese apricot.

Identifieur interne : 002E76 ( Main/Exploration ); précédent : 002E75; suivant : 002E77

Functional and expressional analyses of PmDAM genes associated with endodormancy in Japanese apricot.

Auteurs : Ryuta Sasaki [Japon] ; Hisayo Yamane ; Tomomi Ooka ; Hiroaki Jotatsu ; Yuto Kitamura ; Takashi Akagi ; Ryutaro Tao

Source :

RBID : pubmed:21795580

Descripteurs français

English descriptors

Abstract

Bud endodormancy in woody plants plays an important role in their perennial growth cycles. We previously identified a MADS box gene, DORMANCY-ASSOCIATED MADS box6 (PmDAM6), expressed in the endodormant lateral buds of Japanese apricot (Prunus mume), as a candidate for the dormancy-controlling gene. In this study, we demonstrate the growth inhibitory functions of PmDAM6 by overexpressing it in transgenic poplar (Populus tremula × Populus tremuloides). Transgenic poplar plants constitutively expressing PmDAM6 showed growth cessation and terminal bud set under environmental conditions in which control transformants continued shoot tip growth, suggesting the growth inhibitory functions of PmDAM6. In the Japanese apricot genome, we identified six tandemly arrayed PmDAM genes (PmDAM1-PmDAM6) that conserve an amphiphilic repression motif, known to act as a repression domain, at the carboxyl-terminal end, suggesting that they all may act as transcriptional repressors. Seasonal expression analysis and cold treatment in autumn indicated that all PmDAMs were repressed during prolonged cold exposure and maintained at low levels until endodormancy release. Furthermore, PmDAM4 to PmDAM6 responses to a short period of cold exposure appeared to vary between low- and high-chill genotypes. In the high-chill genotype, a short period of cold exposure slightly increased PmDAM4 to PmDAM6 expression, while in the low-chill genotype, the same treatment repressed PmDAM4 to PmDAM6 expression. Furthermore, PmDAM4 to PmDAM6 expression was negatively correlated with endodormancy release. We here discuss the genotype-dependent seasonal expression patterns of PmDAMs in relation to their involvement in endodormancy and variation in chilling requirements.

DOI: 10.1104/pp.111.181982
PubMed: 21795580
PubMed Central: PMC3165894


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Functional and expressional analyses of PmDAM genes associated with endodormancy in Japanese apricot.</title>
<author>
<name sortKey="Sasaki, Ryuta" sort="Sasaki, Ryuta" uniqKey="Sasaki R" first="Ryuta" last="Sasaki">Ryuta Sasaki</name>
<affiliation wicri:level="4">
<nlm:affiliation>Laboratory of Pomology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Laboratory of Pomology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502</wicri:regionArea>
<orgName type="university">Université de Kyoto</orgName>
<placeName>
<settlement type="city">Kyoto</settlement>
<region type="prefecture">Région du Kansai</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Yamane, Hisayo" sort="Yamane, Hisayo" uniqKey="Yamane H" first="Hisayo" last="Yamane">Hisayo Yamane</name>
</author>
<author>
<name sortKey="Ooka, Tomomi" sort="Ooka, Tomomi" uniqKey="Ooka T" first="Tomomi" last="Ooka">Tomomi Ooka</name>
</author>
<author>
<name sortKey="Jotatsu, Hiroaki" sort="Jotatsu, Hiroaki" uniqKey="Jotatsu H" first="Hiroaki" last="Jotatsu">Hiroaki Jotatsu</name>
</author>
<author>
<name sortKey="Kitamura, Yuto" sort="Kitamura, Yuto" uniqKey="Kitamura Y" first="Yuto" last="Kitamura">Yuto Kitamura</name>
</author>
<author>
<name sortKey="Akagi, Takashi" sort="Akagi, Takashi" uniqKey="Akagi T" first="Takashi" last="Akagi">Takashi Akagi</name>
</author>
<author>
<name sortKey="Tao, Ryutaro" sort="Tao, Ryutaro" uniqKey="Tao R" first="Ryutaro" last="Tao">Ryutaro Tao</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2011">2011</date>
<idno type="RBID">pubmed:21795580</idno>
<idno type="pmid">21795580</idno>
<idno type="doi">10.1104/pp.111.181982</idno>
<idno type="pmc">PMC3165894</idno>
<idno type="wicri:Area/Main/Corpus">002D30</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002D30</idno>
<idno type="wicri:Area/Main/Curation">002D30</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002D30</idno>
<idno type="wicri:Area/Main/Exploration">002D30</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Functional and expressional analyses of PmDAM genes associated with endodormancy in Japanese apricot.</title>
<author>
<name sortKey="Sasaki, Ryuta" sort="Sasaki, Ryuta" uniqKey="Sasaki R" first="Ryuta" last="Sasaki">Ryuta Sasaki</name>
<affiliation wicri:level="4">
<nlm:affiliation>Laboratory of Pomology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Laboratory of Pomology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502</wicri:regionArea>
<orgName type="university">Université de Kyoto</orgName>
<placeName>
<settlement type="city">Kyoto</settlement>
<region type="prefecture">Région du Kansai</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Yamane, Hisayo" sort="Yamane, Hisayo" uniqKey="Yamane H" first="Hisayo" last="Yamane">Hisayo Yamane</name>
</author>
<author>
<name sortKey="Ooka, Tomomi" sort="Ooka, Tomomi" uniqKey="Ooka T" first="Tomomi" last="Ooka">Tomomi Ooka</name>
</author>
<author>
<name sortKey="Jotatsu, Hiroaki" sort="Jotatsu, Hiroaki" uniqKey="Jotatsu H" first="Hiroaki" last="Jotatsu">Hiroaki Jotatsu</name>
</author>
<author>
<name sortKey="Kitamura, Yuto" sort="Kitamura, Yuto" uniqKey="Kitamura Y" first="Yuto" last="Kitamura">Yuto Kitamura</name>
</author>
<author>
<name sortKey="Akagi, Takashi" sort="Akagi, Takashi" uniqKey="Akagi T" first="Takashi" last="Akagi">Takashi Akagi</name>
</author>
<author>
<name sortKey="Tao, Ryutaro" sort="Tao, Ryutaro" uniqKey="Tao R" first="Ryutaro" last="Tao">Ryutaro Tao</name>
</author>
</analytic>
<series>
<title level="j">Plant physiology</title>
<idno type="eISSN">1532-2548</idno>
<imprint>
<date when="2011" type="published">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence (MeSH)</term>
<term>Cold Temperature (MeSH)</term>
<term>Down-Regulation (MeSH)</term>
<term>Genes, Plant (MeSH)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Plant Proteins (chemistry)</term>
<term>Plant Proteins (genetics)</term>
<term>Plants, Genetically Modified (MeSH)</term>
<term>Prunus (genetics)</term>
<term>Sequence Homology, Amino Acid (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Basse température (MeSH)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Gènes de plante (MeSH)</term>
<term>Protéines végétales (composition chimique)</term>
<term>Protéines végétales (génétique)</term>
<term>Prunus (génétique)</term>
<term>Régulation négative (MeSH)</term>
<term>Similitude de séquences d'acides aminés (MeSH)</term>
<term>Séquence d'acides aminés (MeSH)</term>
<term>Végétaux génétiquement modifiés (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Prunus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Protéines végétales</term>
<term>Prunus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Cold Temperature</term>
<term>Down-Regulation</term>
<term>Genes, Plant</term>
<term>Molecular Sequence Data</term>
<term>Plants, Genetically Modified</term>
<term>Sequence Homology, Amino Acid</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Basse température</term>
<term>Données de séquences moléculaires</term>
<term>Gènes de plante</term>
<term>Régulation négative</term>
<term>Similitude de séquences d'acides aminés</term>
<term>Séquence d'acides aminés</term>
<term>Végétaux génétiquement modifiés</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Bud endodormancy in woody plants plays an important role in their perennial growth cycles. We previously identified a MADS box gene, DORMANCY-ASSOCIATED MADS box6 (PmDAM6), expressed in the endodormant lateral buds of Japanese apricot (Prunus mume), as a candidate for the dormancy-controlling gene. In this study, we demonstrate the growth inhibitory functions of PmDAM6 by overexpressing it in transgenic poplar (Populus tremula × Populus tremuloides). Transgenic poplar plants constitutively expressing PmDAM6 showed growth cessation and terminal bud set under environmental conditions in which control transformants continued shoot tip growth, suggesting the growth inhibitory functions of PmDAM6. In the Japanese apricot genome, we identified six tandemly arrayed PmDAM genes (PmDAM1-PmDAM6) that conserve an amphiphilic repression motif, known to act as a repression domain, at the carboxyl-terminal end, suggesting that they all may act as transcriptional repressors. Seasonal expression analysis and cold treatment in autumn indicated that all PmDAMs were repressed during prolonged cold exposure and maintained at low levels until endodormancy release. Furthermore, PmDAM4 to PmDAM6 responses to a short period of cold exposure appeared to vary between low- and high-chill genotypes. In the high-chill genotype, a short period of cold exposure slightly increased PmDAM4 to PmDAM6 expression, while in the low-chill genotype, the same treatment repressed PmDAM4 to PmDAM6 expression. Furthermore, PmDAM4 to PmDAM6 expression was negatively correlated with endodormancy release. We here discuss the genotype-dependent seasonal expression patterns of PmDAMs in relation to their involvement in endodormancy and variation in chilling requirements.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">21795580</PMID>
<DateCompleted>
<Year>2012</Year>
<Month>01</Month>
<Day>30</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1532-2548</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>157</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2011</Year>
<Month>Sep</Month>
</PubDate>
</JournalIssue>
<Title>Plant physiology</Title>
<ISOAbbreviation>Plant Physiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Functional and expressional analyses of PmDAM genes associated with endodormancy in Japanese apricot.</ArticleTitle>
<Pagination>
<MedlinePgn>485-97</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1104/pp.111.181982</ELocationID>
<Abstract>
<AbstractText>Bud endodormancy in woody plants plays an important role in their perennial growth cycles. We previously identified a MADS box gene, DORMANCY-ASSOCIATED MADS box6 (PmDAM6), expressed in the endodormant lateral buds of Japanese apricot (Prunus mume), as a candidate for the dormancy-controlling gene. In this study, we demonstrate the growth inhibitory functions of PmDAM6 by overexpressing it in transgenic poplar (Populus tremula × Populus tremuloides). Transgenic poplar plants constitutively expressing PmDAM6 showed growth cessation and terminal bud set under environmental conditions in which control transformants continued shoot tip growth, suggesting the growth inhibitory functions of PmDAM6. In the Japanese apricot genome, we identified six tandemly arrayed PmDAM genes (PmDAM1-PmDAM6) that conserve an amphiphilic repression motif, known to act as a repression domain, at the carboxyl-terminal end, suggesting that they all may act as transcriptional repressors. Seasonal expression analysis and cold treatment in autumn indicated that all PmDAMs were repressed during prolonged cold exposure and maintained at low levels until endodormancy release. Furthermore, PmDAM4 to PmDAM6 responses to a short period of cold exposure appeared to vary between low- and high-chill genotypes. In the high-chill genotype, a short period of cold exposure slightly increased PmDAM4 to PmDAM6 expression, while in the low-chill genotype, the same treatment repressed PmDAM4 to PmDAM6 expression. Furthermore, PmDAM4 to PmDAM6 expression was negatively correlated with endodormancy release. We here discuss the genotype-dependent seasonal expression patterns of PmDAMs in relation to their involvement in endodormancy and variation in chilling requirements.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Sasaki</LastName>
<ForeName>Ryuta</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Laboratory of Pomology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yamane</LastName>
<ForeName>Hisayo</ForeName>
<Initials>H</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ooka</LastName>
<ForeName>Tomomi</ForeName>
<Initials>T</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Jotatsu</LastName>
<ForeName>Hiroaki</ForeName>
<Initials>H</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kitamura</LastName>
<ForeName>Yuto</ForeName>
<Initials>Y</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Akagi</LastName>
<ForeName>Takashi</ForeName>
<Initials>T</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Tao</LastName>
<ForeName>Ryutaro</ForeName>
<Initials>R</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>GENBANK</DataBankName>
<AccessionNumberList>
<AccessionNumber>AB576349</AccessionNumber>
<AccessionNumber>AB576350</AccessionNumber>
<AccessionNumber>AB576351</AccessionNumber>
<AccessionNumber>AB576352</AccessionNumber>
<AccessionNumber>AB576353</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2011</Year>
<Month>07</Month>
<Day>27</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Plant Physiol</MedlineTA>
<NlmUniqueID>0401224</NlmUniqueID>
<ISSNLinking>0032-0889</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003080" MajorTopicYN="N">Cold Temperature</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015536" MajorTopicYN="N">Down-Regulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017343" MajorTopicYN="Y">Genes, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030821" MajorTopicYN="N">Plants, Genetically Modified</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D027861" MajorTopicYN="N">Prunus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017386" MajorTopicYN="N">Sequence Homology, Amino Acid</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2011</Year>
<Month>7</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2011</Year>
<Month>7</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2012</Year>
<Month>1</Month>
<Day>31</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">21795580</ArticleId>
<ArticleId IdType="pii">pp.111.181982</ArticleId>
<ArticleId IdType="doi">10.1104/pp.111.181982</ArticleId>
<ArticleId IdType="pmc">PMC3165894</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant J. 2006 May;46(4):628-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16640599</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2011 Jun;62(10):3481-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21378115</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 2006 Aug 15;378:84-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16831523</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2006 Dec;26(12):1559-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17169895</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2007;58:435-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17280524</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2007 May;12(5):217-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17416545</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2007 May;50(4):557-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17419838</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 Aug;19(8):2370-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17693531</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2008 Jan;20(1):59-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18192437</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2008 Apr;227(5):1001-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18185941</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2008;9:536</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19014493</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2009;9:81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19558704</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2009;60(12):3521-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19553369</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2010 Mar;185(4):917-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20028471</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2001 Aug;13(8):1959-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11487705</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2002 Aug;14(8):1885-901</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12172029</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2003 Nov;8(11):534-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14607098</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Hered. 2004 Sep-Oct;95(5):436-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15388771</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 1995 Apr;36(3):525-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7757342</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1996 Jul;31(4):887-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8806418</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2010 May;73(1-2):169-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20066557</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2010 May;73(1-2):157-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20143130</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2010 May;30(5):655-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20231169</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2010 May 1;62(4):674-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20202169</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 May 19;312(5776):1040-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16675663</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Japon</li>
</country>
<region>
<li>Région du Kansai</li>
</region>
<settlement>
<li>Kyoto</li>
</settlement>
<orgName>
<li>Université de Kyoto</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Akagi, Takashi" sort="Akagi, Takashi" uniqKey="Akagi T" first="Takashi" last="Akagi">Takashi Akagi</name>
<name sortKey="Jotatsu, Hiroaki" sort="Jotatsu, Hiroaki" uniqKey="Jotatsu H" first="Hiroaki" last="Jotatsu">Hiroaki Jotatsu</name>
<name sortKey="Kitamura, Yuto" sort="Kitamura, Yuto" uniqKey="Kitamura Y" first="Yuto" last="Kitamura">Yuto Kitamura</name>
<name sortKey="Ooka, Tomomi" sort="Ooka, Tomomi" uniqKey="Ooka T" first="Tomomi" last="Ooka">Tomomi Ooka</name>
<name sortKey="Tao, Ryutaro" sort="Tao, Ryutaro" uniqKey="Tao R" first="Ryutaro" last="Tao">Ryutaro Tao</name>
<name sortKey="Yamane, Hisayo" sort="Yamane, Hisayo" uniqKey="Yamane H" first="Hisayo" last="Yamane">Hisayo Yamane</name>
</noCountry>
<country name="Japon">
<region name="Région du Kansai">
<name sortKey="Sasaki, Ryuta" sort="Sasaki, Ryuta" uniqKey="Sasaki R" first="Ryuta" last="Sasaki">Ryuta Sasaki</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002E76 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002E76 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:21795580
   |texte=   Functional and expressional analyses of PmDAM genes associated with endodormancy in Japanese apricot.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:21795580" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020