Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Glycoside hydrolase inventory drives plant polysaccharide deconstruction by the extremely thermophilic bacterium Caldicellulosiruptor saccharolyticus.

Identifieur interne : 002E52 ( Main/Exploration ); précédent : 002E51; suivant : 002E53

Glycoside hydrolase inventory drives plant polysaccharide deconstruction by the extremely thermophilic bacterium Caldicellulosiruptor saccharolyticus.

Auteurs : Amy L. Vanfossen [États-Unis] ; Inci Ozdemir ; Samantha L. Zelin ; Robert M. Kelly

Source :

RBID : pubmed:21337327

Descripteurs français

English descriptors

Abstract

The genome of Caldicellulosiruptor saccharolyticus encodes a range of glycoside hydrolases (GHs) that mediate plant biomass deconstruction by this bacterium. Two GH-based genomic loci that appear to be central to the hydrolysis of hemicellulosic and cellulosic substrates were examined. XynB-XynF (Csac_2404-Csac_2411) encodes intracellular and extracellular GHs that are active towards xylan and xylan side-chains, as well as carboxymethyl cellulose (CMC). XynD (Csac_2409) and XynE (Csac_2410) were produced recombinantly and confirmed to be xylanases. XynF (Csac_2411) was produced in two separate polypeptides, each with one GH43 catalytic domain displaying α-L-arabinofuranosidase activity. CelA-ManB (Csac_1076-Csac_1080) encodes four multi-domain, extracellular GHs, including CelB (Csac_1078), a 118 kDa extracellular enzyme not present in the other genome-sequenced member of this genus, Caldicellulosiruptor bescii (formerly Anaerocellum thermophilum). CelB contains both GH10 and GH5 domains, separated by a family 3 carbohydrate-binding module (CBM3). CelB encoded in Csac_1078 differed from the version originally reported (Saul et al., 1990, Appl Environ Microbiol 56:3117–3124) with respect to linker regions. CelB hydrolyzed xylan and CMC, as well as barley b-glucan, glucomannan, and arabinoxylan. For all substrates tested, intact CelB was significantly more active than either the individual GH5 and GH10 domains or the two discrete domains together, indicating that the multi-domain architecture is essential for complex carbohydrate hydrolysis. Transcriptomes for C. saccharolyticus grown at 70°C on glucose, xylose, xyloglucan, switchgrass, and poplar revealed that certain GHs were particularly responsive to growth on switchgrass and poplar and that CelB was in the top decile of all transcripts during growth on the plant biomass.

DOI: 10.1002/bit.23093
PubMed: 21337327


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Glycoside hydrolase inventory drives plant polysaccharide deconstruction by the extremely thermophilic bacterium Caldicellulosiruptor saccharolyticus.</title>
<author>
<name sortKey="Vanfossen, Amy L" sort="Vanfossen, Amy L" uniqKey="Vanfossen A" first="Amy L" last="Vanfossen">Amy L. Vanfossen</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905</wicri:regionArea>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Ozdemir, Inci" sort="Ozdemir, Inci" uniqKey="Ozdemir I" first="Inci" last="Ozdemir">Inci Ozdemir</name>
</author>
<author>
<name sortKey="Zelin, Samantha L" sort="Zelin, Samantha L" uniqKey="Zelin S" first="Samantha L" last="Zelin">Samantha L. Zelin</name>
</author>
<author>
<name sortKey="Kelly, Robert M" sort="Kelly, Robert M" uniqKey="Kelly R" first="Robert M" last="Kelly">Robert M. Kelly</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2011">2011</date>
<idno type="RBID">pubmed:21337327</idno>
<idno type="pmid">21337327</idno>
<idno type="doi">10.1002/bit.23093</idno>
<idno type="wicri:Area/Main/Corpus">002F22</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002F22</idno>
<idno type="wicri:Area/Main/Curation">002F22</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002F22</idno>
<idno type="wicri:Area/Main/Exploration">002F22</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Glycoside hydrolase inventory drives plant polysaccharide deconstruction by the extremely thermophilic bacterium Caldicellulosiruptor saccharolyticus.</title>
<author>
<name sortKey="Vanfossen, Amy L" sort="Vanfossen, Amy L" uniqKey="Vanfossen A" first="Amy L" last="Vanfossen">Amy L. Vanfossen</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905</wicri:regionArea>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Ozdemir, Inci" sort="Ozdemir, Inci" uniqKey="Ozdemir I" first="Inci" last="Ozdemir">Inci Ozdemir</name>
</author>
<author>
<name sortKey="Zelin, Samantha L" sort="Zelin, Samantha L" uniqKey="Zelin S" first="Samantha L" last="Zelin">Samantha L. Zelin</name>
</author>
<author>
<name sortKey="Kelly, Robert M" sort="Kelly, Robert M" uniqKey="Kelly R" first="Robert M" last="Kelly">Robert M. Kelly</name>
</author>
</analytic>
<series>
<title level="j">Biotechnology and bioengineering</title>
<idno type="eISSN">1097-0290</idno>
<imprint>
<date when="2011" type="published">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Bacterial Proteins (chemistry)</term>
<term>Bacterial Proteins (genetics)</term>
<term>Bacterial Proteins (metabolism)</term>
<term>Carboxymethylcellulose Sodium (metabolism)</term>
<term>Culture Media (chemistry)</term>
<term>Gene Expression Profiling (MeSH)</term>
<term>Glycoside Hydrolases (chemistry)</term>
<term>Glycoside Hydrolases (genetics)</term>
<term>Glycoside Hydrolases (metabolism)</term>
<term>Gram-Positive Bacteria (enzymology)</term>
<term>Gram-Positive Bacteria (genetics)</term>
<term>Gram-Positive Bacteria (metabolism)</term>
<term>Molecular Weight (MeSH)</term>
<term>Plants (chemistry)</term>
<term>Polysaccharides (metabolism)</term>
<term>Xylans (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Analyse de profil d'expression de gènes (MeSH)</term>
<term>Bactéries à Gram positif (enzymologie)</term>
<term>Bactéries à Gram positif (génétique)</term>
<term>Bactéries à Gram positif (métabolisme)</term>
<term>Carboxyméthylcellulose de sodium (métabolisme)</term>
<term>Glycosidases (composition chimique)</term>
<term>Glycosidases (génétique)</term>
<term>Glycosidases (métabolisme)</term>
<term>Masse moléculaire (MeSH)</term>
<term>Milieux de culture (composition chimique)</term>
<term>Plantes (composition chimique)</term>
<term>Polyosides (métabolisme)</term>
<term>Protéines bactériennes (composition chimique)</term>
<term>Protéines bactériennes (génétique)</term>
<term>Protéines bactériennes (métabolisme)</term>
<term>Xylanes (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Bacterial Proteins</term>
<term>Culture Media</term>
<term>Glycoside Hydrolases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Bacterial Proteins</term>
<term>Glycoside Hydrolases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Bacterial Proteins</term>
<term>Carboxymethylcellulose Sodium</term>
<term>Glycoside Hydrolases</term>
<term>Polysaccharides</term>
<term>Xylans</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Plants</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Glycosidases</term>
<term>Milieux de culture</term>
<term>Plantes</term>
<term>Protéines bactériennes</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Bactéries à Gram positif</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Gram-Positive Bacteria</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Gram-Positive Bacteria</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Bactéries à Gram positif</term>
<term>Glycosidases</term>
<term>Protéines bactériennes</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Gram-Positive Bacteria</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Bactéries à Gram positif</term>
<term>Carboxyméthylcellulose de sodium</term>
<term>Glycosidases</term>
<term>Polyosides</term>
<term>Protéines bactériennes</term>
<term>Xylanes</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Gene Expression Profiling</term>
<term>Molecular Weight</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Analyse de profil d'expression de gènes</term>
<term>Masse moléculaire</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The genome of Caldicellulosiruptor saccharolyticus encodes a range of glycoside hydrolases (GHs) that mediate plant biomass deconstruction by this bacterium. Two GH-based genomic loci that appear to be central to the hydrolysis of hemicellulosic and cellulosic substrates were examined. XynB-XynF (Csac_2404-Csac_2411) encodes intracellular and extracellular GHs that are active towards xylan and xylan side-chains, as well as carboxymethyl cellulose (CMC). XynD (Csac_2409) and XynE (Csac_2410) were produced recombinantly and confirmed to be xylanases. XynF (Csac_2411) was produced in two separate polypeptides, each with one GH43 catalytic domain displaying α-L-arabinofuranosidase activity. CelA-ManB (Csac_1076-Csac_1080) encodes four multi-domain, extracellular GHs, including CelB (Csac_1078), a 118 kDa extracellular enzyme not present in the other genome-sequenced member of this genus, Caldicellulosiruptor bescii (formerly Anaerocellum thermophilum). CelB contains both GH10 and GH5 domains, separated by a family 3 carbohydrate-binding module (CBM3). CelB encoded in Csac_1078 differed from the version originally reported (Saul et al., 1990, Appl Environ Microbiol 56:3117–3124) with respect to linker regions. CelB hydrolyzed xylan and CMC, as well as barley b-glucan, glucomannan, and arabinoxylan. For all substrates tested, intact CelB was significantly more active than either the individual GH5 and GH10 domains or the two discrete domains together, indicating that the multi-domain architecture is essential for complex carbohydrate hydrolysis. Transcriptomes for C. saccharolyticus grown at 70°C on glucose, xylose, xyloglucan, switchgrass, and poplar revealed that certain GHs were particularly responsive to growth on switchgrass and poplar and that CelB was in the top decile of all transcripts during growth on the plant biomass.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">21337327</PMID>
<DateCompleted>
<Year>2011</Year>
<Month>08</Month>
<Day>30</Day>
</DateCompleted>
<DateRevised>
<Year>2016</Year>
<Month>11</Month>
<Day>25</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1097-0290</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>108</Volume>
<Issue>7</Issue>
<PubDate>
<Year>2011</Year>
<Month>Jul</Month>
</PubDate>
</JournalIssue>
<Title>Biotechnology and bioengineering</Title>
<ISOAbbreviation>Biotechnol Bioeng</ISOAbbreviation>
</Journal>
<ArticleTitle>Glycoside hydrolase inventory drives plant polysaccharide deconstruction by the extremely thermophilic bacterium Caldicellulosiruptor saccharolyticus.</ArticleTitle>
<Pagination>
<MedlinePgn>1559-69</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1002/bit.23093</ELocationID>
<Abstract>
<AbstractText>The genome of Caldicellulosiruptor saccharolyticus encodes a range of glycoside hydrolases (GHs) that mediate plant biomass deconstruction by this bacterium. Two GH-based genomic loci that appear to be central to the hydrolysis of hemicellulosic and cellulosic substrates were examined. XynB-XynF (Csac_2404-Csac_2411) encodes intracellular and extracellular GHs that are active towards xylan and xylan side-chains, as well as carboxymethyl cellulose (CMC). XynD (Csac_2409) and XynE (Csac_2410) were produced recombinantly and confirmed to be xylanases. XynF (Csac_2411) was produced in two separate polypeptides, each with one GH43 catalytic domain displaying α-L-arabinofuranosidase activity. CelA-ManB (Csac_1076-Csac_1080) encodes four multi-domain, extracellular GHs, including CelB (Csac_1078), a 118 kDa extracellular enzyme not present in the other genome-sequenced member of this genus, Caldicellulosiruptor bescii (formerly Anaerocellum thermophilum). CelB contains both GH10 and GH5 domains, separated by a family 3 carbohydrate-binding module (CBM3). CelB encoded in Csac_1078 differed from the version originally reported (Saul et al., 1990, Appl Environ Microbiol 56:3117–3124) with respect to linker regions. CelB hydrolyzed xylan and CMC, as well as barley b-glucan, glucomannan, and arabinoxylan. For all substrates tested, intact CelB was significantly more active than either the individual GH5 and GH10 domains or the two discrete domains together, indicating that the multi-domain architecture is essential for complex carbohydrate hydrolysis. Transcriptomes for C. saccharolyticus grown at 70°C on glucose, xylose, xyloglucan, switchgrass, and poplar revealed that certain GHs were particularly responsive to growth on switchgrass and poplar and that CelB was in the top decile of all transcripts during growth on the plant biomass.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>VanFossen</LastName>
<ForeName>Amy L</ForeName>
<Initials>AL</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ozdemir</LastName>
<ForeName>Inci</ForeName>
<Initials>I</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zelin</LastName>
<ForeName>Samantha L</ForeName>
<Initials>SL</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kelly</LastName>
<ForeName>Robert M</ForeName>
<Initials>RM</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2011</Year>
<Month>03</Month>
<Day>11</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Biotechnol Bioeng</MedlineTA>
<NlmUniqueID>7502021</NlmUniqueID>
<ISSNLinking>0006-3592</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D001426">Bacterial Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D003470">Culture Media</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011134">Polysaccharides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014990">Xylans</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.2.1.-</RegistryNumber>
<NameOfSubstance UI="D006026">Glycoside Hydrolases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>K679OBS311</RegistryNumber>
<NameOfSubstance UI="D002266">Carboxymethylcellulose Sodium</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001426" MajorTopicYN="N">Bacterial Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002266" MajorTopicYN="N">Carboxymethylcellulose Sodium</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003470" MajorTopicYN="N">Culture Media</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020869" MajorTopicYN="N">Gene Expression Profiling</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006026" MajorTopicYN="N">Glycoside Hydrolases</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006094" MajorTopicYN="N">Gram-Positive Bacteria</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008970" MajorTopicYN="N">Molecular Weight</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010944" MajorTopicYN="N">Plants</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011134" MajorTopicYN="N">Polysaccharides</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014990" MajorTopicYN="N">Xylans</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2010</Year>
<Month>11</Month>
<Day>15</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2011</Year>
<Month>01</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2011</Year>
<Month>02</Month>
<Day>01</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2011</Year>
<Month>2</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2011</Year>
<Month>2</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2011</Year>
<Month>8</Month>
<Day>31</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">21337327</ArticleId>
<ArticleId IdType="doi">10.1002/bit.23093</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Caroline du Nord</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Kelly, Robert M" sort="Kelly, Robert M" uniqKey="Kelly R" first="Robert M" last="Kelly">Robert M. Kelly</name>
<name sortKey="Ozdemir, Inci" sort="Ozdemir, Inci" uniqKey="Ozdemir I" first="Inci" last="Ozdemir">Inci Ozdemir</name>
<name sortKey="Zelin, Samantha L" sort="Zelin, Samantha L" uniqKey="Zelin S" first="Samantha L" last="Zelin">Samantha L. Zelin</name>
</noCountry>
<country name="États-Unis">
<region name="Caroline du Nord">
<name sortKey="Vanfossen, Amy L" sort="Vanfossen, Amy L" uniqKey="Vanfossen A" first="Amy L" last="Vanfossen">Amy L. Vanfossen</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002E52 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002E52 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:21337327
   |texte=   Glycoside hydrolase inventory drives plant polysaccharide deconstruction by the extremely thermophilic bacterium Caldicellulosiruptor saccharolyticus.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:21337327" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020