Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Monitoring network design for phytoremediation systems using primary and secondary data sources.

Identifieur interne : 002D85 ( Main/Exploration ); précédent : 002D84; suivant : 002D86

Monitoring network design for phytoremediation systems using primary and secondary data sources.

Auteurs : Gayathri Gopalakrishnan [États-Unis] ; Barbara S. Minsker ; Albert J. Valocchi

Source :

RBID : pubmed:21557573

Descripteurs français

English descriptors

Abstract

Phytoremediation, or contaminant removal using plants, has been deployed at many sites to remediate contaminated soil and groundwater. Research has shown that trees are low-cost, rapid, and relatively simple-to-use monitoring systems as well as inexpensive alternatives to traditional pump-and-treat systems. However, tree monitoring is also an indirect measure of subsurface contamination and inherently more uncertain than conventional techniques such as wells or soil borings that measure contaminant concentrations directly. This study explores the implications for monitoring network design at real-world sites where scarce primary data such as monitoring wells or soil borings are supplemented by extensive secondary data such as trees. In this study, we combined secondary and primary data into a composite data set using models to transform secondary data to primary, as primary data were too sparse to attempt cokriging. Optimal monitoring networks using both trees and conventional techniques were determined using genetic algorithms, and trade-off curves between cost and uncertainty are presented for a phytoremediation system at Argonne National Laboratory. Optimal solutions found at this site indicate that increasing the number of secondary data sampled resulted in a significant decrease in global uncertainty with a minimal increase in cost. The choice of the data transformation model had an impact on the optimal designs and uncertainty estimated at the site. Using a data transformation model with a higher error resulted in monitoring network designs where primary data were favored over colocated secondary data. The spatial configuration of the monitoring network design was similar with regard to the areas sampled, irrespective of the data transformation model used. Overall, this study shows that using a composite data set, with primary and secondary data, results in effective monitoring designs, even at sites where the only data transformation model available is one with significant error.

DOI: 10.1021/es1042657
PubMed: 21557573


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Monitoring network design for phytoremediation systems using primary and secondary data sources.</title>
<author>
<name sortKey="Gopalakrishnan, Gayathri" sort="Gopalakrishnan, Gayathri" uniqKey="Gopalakrishnan G" first="Gayathri" last="Gopalakrishnan">Gayathri Gopalakrishnan</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 205 N Mathews Avenue, Urbana, Illinois 61801, USA. ggopalakrishnan@anl.gov</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 205 N Mathews Avenue, Urbana, Illinois 61801</wicri:regionArea>
<wicri:noRegion>Illinois 61801</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Minsker, Barbara S" sort="Minsker, Barbara S" uniqKey="Minsker B" first="Barbara S" last="Minsker">Barbara S. Minsker</name>
</author>
<author>
<name sortKey="Valocchi, Albert J" sort="Valocchi, Albert J" uniqKey="Valocchi A" first="Albert J" last="Valocchi">Albert J. Valocchi</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2011">2011</date>
<idno type="RBID">pubmed:21557573</idno>
<idno type="pmid">21557573</idno>
<idno type="doi">10.1021/es1042657</idno>
<idno type="wicri:Area/Main/Corpus">002E24</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002E24</idno>
<idno type="wicri:Area/Main/Curation">002E24</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002E24</idno>
<idno type="wicri:Area/Main/Exploration">002E24</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Monitoring network design for phytoremediation systems using primary and secondary data sources.</title>
<author>
<name sortKey="Gopalakrishnan, Gayathri" sort="Gopalakrishnan, Gayathri" uniqKey="Gopalakrishnan G" first="Gayathri" last="Gopalakrishnan">Gayathri Gopalakrishnan</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 205 N Mathews Avenue, Urbana, Illinois 61801, USA. ggopalakrishnan@anl.gov</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 205 N Mathews Avenue, Urbana, Illinois 61801</wicri:regionArea>
<wicri:noRegion>Illinois 61801</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Minsker, Barbara S" sort="Minsker, Barbara S" uniqKey="Minsker B" first="Barbara S" last="Minsker">Barbara S. Minsker</name>
</author>
<author>
<name sortKey="Valocchi, Albert J" sort="Valocchi, Albert J" uniqKey="Valocchi A" first="Albert J" last="Valocchi">Albert J. Valocchi</name>
</author>
</analytic>
<series>
<title level="j">Environmental science & technology</title>
<idno type="eISSN">1520-5851</idno>
<imprint>
<date when="2011" type="published">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Algorithms (MeSH)</term>
<term>Biodegradation, Environmental (MeSH)</term>
<term>Environmental Monitoring (statistics & numerical data)</term>
<term>Populus (chemistry)</term>
<term>Salix (chemistry)</term>
<term>Soil Pollutants (analysis)</term>
<term>Trichloroethylene (analysis)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Algorithmes (MeSH)</term>
<term>Dépollution biologique de l'environnement (MeSH)</term>
<term>Polluants du sol (analyse)</term>
<term>Populus (composition chimique)</term>
<term>Salix (composition chimique)</term>
<term>Surveillance de l'environnement (statistiques et données numériques)</term>
<term>Trichloroéthylène (analyse)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analysis" xml:lang="en">
<term>Soil Pollutants</term>
<term>Trichloroethylene</term>
</keywords>
<keywords scheme="MESH" qualifier="analyse" xml:lang="fr">
<term>Polluants du sol</term>
<term>Trichloroéthylène</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Populus</term>
<term>Salix</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Populus</term>
<term>Salix</term>
</keywords>
<keywords scheme="MESH" qualifier="statistics & numerical data" xml:lang="en">
<term>Environmental Monitoring</term>
</keywords>
<keywords scheme="MESH" qualifier="statistiques et données numériques" xml:lang="fr">
<term>Surveillance de l'environnement</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Algorithms</term>
<term>Biodegradation, Environmental</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Algorithmes</term>
<term>Dépollution biologique de l'environnement</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Phytoremediation, or contaminant removal using plants, has been deployed at many sites to remediate contaminated soil and groundwater. Research has shown that trees are low-cost, rapid, and relatively simple-to-use monitoring systems as well as inexpensive alternatives to traditional pump-and-treat systems. However, tree monitoring is also an indirect measure of subsurface contamination and inherently more uncertain than conventional techniques such as wells or soil borings that measure contaminant concentrations directly. This study explores the implications for monitoring network design at real-world sites where scarce primary data such as monitoring wells or soil borings are supplemented by extensive secondary data such as trees. In this study, we combined secondary and primary data into a composite data set using models to transform secondary data to primary, as primary data were too sparse to attempt cokriging. Optimal monitoring networks using both trees and conventional techniques were determined using genetic algorithms, and trade-off curves between cost and uncertainty are presented for a phytoremediation system at Argonne National Laboratory. Optimal solutions found at this site indicate that increasing the number of secondary data sampled resulted in a significant decrease in global uncertainty with a minimal increase in cost. The choice of the data transformation model had an impact on the optimal designs and uncertainty estimated at the site. Using a data transformation model with a higher error resulted in monitoring network designs where primary data were favored over colocated secondary data. The spatial configuration of the monitoring network design was similar with regard to the areas sampled, irrespective of the data transformation model used. Overall, this study shows that using a composite data set, with primary and secondary data, results in effective monitoring designs, even at sites where the only data transformation model available is one with significant error.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">21557573</PMID>
<DateCompleted>
<Year>2011</Year>
<Month>09</Month>
<Day>30</Day>
</DateCompleted>
<DateRevised>
<Year>2013</Year>
<Month>11</Month>
<Day>21</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1520-5851</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>45</Volume>
<Issue>11</Issue>
<PubDate>
<Year>2011</Year>
<Month>Jun</Month>
<Day>01</Day>
</PubDate>
</JournalIssue>
<Title>Environmental science & technology</Title>
<ISOAbbreviation>Environ Sci Technol</ISOAbbreviation>
</Journal>
<ArticleTitle>Monitoring network design for phytoremediation systems using primary and secondary data sources.</ArticleTitle>
<Pagination>
<MedlinePgn>4846-53</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1021/es1042657</ELocationID>
<Abstract>
<AbstractText>Phytoremediation, or contaminant removal using plants, has been deployed at many sites to remediate contaminated soil and groundwater. Research has shown that trees are low-cost, rapid, and relatively simple-to-use monitoring systems as well as inexpensive alternatives to traditional pump-and-treat systems. However, tree monitoring is also an indirect measure of subsurface contamination and inherently more uncertain than conventional techniques such as wells or soil borings that measure contaminant concentrations directly. This study explores the implications for monitoring network design at real-world sites where scarce primary data such as monitoring wells or soil borings are supplemented by extensive secondary data such as trees. In this study, we combined secondary and primary data into a composite data set using models to transform secondary data to primary, as primary data were too sparse to attempt cokriging. Optimal monitoring networks using both trees and conventional techniques were determined using genetic algorithms, and trade-off curves between cost and uncertainty are presented for a phytoremediation system at Argonne National Laboratory. Optimal solutions found at this site indicate that increasing the number of secondary data sampled resulted in a significant decrease in global uncertainty with a minimal increase in cost. The choice of the data transformation model had an impact on the optimal designs and uncertainty estimated at the site. Using a data transformation model with a higher error resulted in monitoring network designs where primary data were favored over colocated secondary data. The spatial configuration of the monitoring network design was similar with regard to the areas sampled, irrespective of the data transformation model used. Overall, this study shows that using a composite data set, with primary and secondary data, results in effective monitoring designs, even at sites where the only data transformation model available is one with significant error.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Gopalakrishnan</LastName>
<ForeName>Gayathri</ForeName>
<Initials>G</Initials>
<AffiliationInfo>
<Affiliation>Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 205 N Mathews Avenue, Urbana, Illinois 61801, USA. ggopalakrishnan@anl.gov</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Minsker</LastName>
<ForeName>Barbara S</ForeName>
<Initials>BS</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Valocchi</LastName>
<ForeName>Albert J</ForeName>
<Initials>AJ</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2011</Year>
<Month>05</Month>
<Day>10</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Environ Sci Technol</MedlineTA>
<NlmUniqueID>0213155</NlmUniqueID>
<ISSNLinking>0013-936X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012989">Soil Pollutants</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>290YE8AR51</RegistryNumber>
<NameOfSubstance UI="D014241">Trichloroethylene</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000465" MajorTopicYN="N">Algorithms</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001673" MajorTopicYN="N">Biodegradation, Environmental</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004784" MajorTopicYN="N">Environmental Monitoring</DescriptorName>
<QualifierName UI="Q000706" MajorTopicYN="Y">statistics & numerical data</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032108" MajorTopicYN="N">Salix</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012989" MajorTopicYN="N">Soil Pollutants</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="Y">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014241" MajorTopicYN="N">Trichloroethylene</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="Y">analysis</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2011</Year>
<Month>5</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2011</Year>
<Month>5</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2011</Year>
<Month>10</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">21557573</ArticleId>
<ArticleId IdType="doi">10.1021/es1042657</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Minsker, Barbara S" sort="Minsker, Barbara S" uniqKey="Minsker B" first="Barbara S" last="Minsker">Barbara S. Minsker</name>
<name sortKey="Valocchi, Albert J" sort="Valocchi, Albert J" uniqKey="Valocchi A" first="Albert J" last="Valocchi">Albert J. Valocchi</name>
</noCountry>
<country name="États-Unis">
<noRegion>
<name sortKey="Gopalakrishnan, Gayathri" sort="Gopalakrishnan, Gayathri" uniqKey="Gopalakrishnan G" first="Gayathri" last="Gopalakrishnan">Gayathri Gopalakrishnan</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002D85 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002D85 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:21557573
   |texte=   Monitoring network design for phytoremediation systems using primary and secondary data sources.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:21557573" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020