Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Using next generation transcriptome sequencing to predict an ectomycorrhizal metabolome.

Identifieur interne : 002C56 ( Main/Exploration ); précédent : 002C55; suivant : 002C57

Using next generation transcriptome sequencing to predict an ectomycorrhizal metabolome.

Auteurs : Peter E. Larsen [États-Unis] ; Avinash Sreedasyam ; Geetika Trivedi ; Gopi K. Podila ; Leland J. Cseke ; Frank R. Collart

Source :

RBID : pubmed:21569493

Descripteurs français

English descriptors

Abstract

BACKGROUND

Mycorrhizae, symbiotic interactions between soil fungi and tree roots, are ubiquitous in terrestrial ecosystems. The fungi contribute phosphorous, nitrogen and mobilized nutrients from organic matter in the soil and in return the fungus receives photosynthetically-derived carbohydrates. This union of plant and fungal metabolisms is the mycorrhizal metabolome. Understanding this symbiotic relationship at a molecular level provides important contributions to the understanding of forest ecosystems and global carbon cycling.

RESULTS

We generated next generation short-read transcriptomic sequencing data from fully-formed ectomycorrhizae between Laccaria bicolor and aspen (Populus tremuloides) roots. The transcriptomic data was used to identify statistically significantly expressed gene models using a bootstrap-style approach, and these expressed genes were mapped to specific metabolic pathways. Integration of expressed genes that code for metabolic enzymes and the set of expressed membrane transporters generates a predictive model of the ectomycorrhizal metabolome. The generated model of mycorrhizal metabolome predicts that the specific compounds glycine, glutamate, and allantoin are synthesized by L. bicolor and that these compounds or their metabolites may be used for the benefit of aspen in exchange for the photosynthetically-derived sugars fructose and glucose.

CONCLUSIONS

The analysis illustrates an approach to generate testable biological hypotheses to investigate the complex molecular interactions that drive ectomycorrhizal symbiosis. These models are consistent with experimental environmental data and provide insight into the molecular exchange processes for organisms in this complex ecosystem. The method used here for predicting metabolomic models of mycorrhizal systems from deep RNA sequencing data can be generalized and is broadly applicable to transcriptomic data derived from complex systems.


DOI: 10.1186/1752-0509-5-70
PubMed: 21569493
PubMed Central: PMC3114729


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Using next generation transcriptome sequencing to predict an ectomycorrhizal metabolome.</title>
<author>
<name sortKey="Larsen, Peter E" sort="Larsen, Peter E" uniqKey="Larsen P" first="Peter E" last="Larsen">Peter E. Larsen</name>
<affiliation wicri:level="2">
<nlm:affiliation>Biosciences Division, Argonne National Laboratory, Lemont, IL 60490, USA. plarsen@anl.gov</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biosciences Division, Argonne National Laboratory, Lemont, IL 60490</wicri:regionArea>
<placeName>
<region type="state">Illinois</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Sreedasyam, Avinash" sort="Sreedasyam, Avinash" uniqKey="Sreedasyam A" first="Avinash" last="Sreedasyam">Avinash Sreedasyam</name>
</author>
<author>
<name sortKey="Trivedi, Geetika" sort="Trivedi, Geetika" uniqKey="Trivedi G" first="Geetika" last="Trivedi">Geetika Trivedi</name>
</author>
<author>
<name sortKey="Podila, Gopi K" sort="Podila, Gopi K" uniqKey="Podila G" first="Gopi K" last="Podila">Gopi K. Podila</name>
</author>
<author>
<name sortKey="Cseke, Leland J" sort="Cseke, Leland J" uniqKey="Cseke L" first="Leland J" last="Cseke">Leland J. Cseke</name>
</author>
<author>
<name sortKey="Collart, Frank R" sort="Collart, Frank R" uniqKey="Collart F" first="Frank R" last="Collart">Frank R. Collart</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2011">2011</date>
<idno type="RBID">pubmed:21569493</idno>
<idno type="pmid">21569493</idno>
<idno type="doi">10.1186/1752-0509-5-70</idno>
<idno type="pmc">PMC3114729</idno>
<idno type="wicri:Area/Main/Corpus">002E15</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002E15</idno>
<idno type="wicri:Area/Main/Curation">002E15</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002E15</idno>
<idno type="wicri:Area/Main/Exploration">002E15</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Using next generation transcriptome sequencing to predict an ectomycorrhizal metabolome.</title>
<author>
<name sortKey="Larsen, Peter E" sort="Larsen, Peter E" uniqKey="Larsen P" first="Peter E" last="Larsen">Peter E. Larsen</name>
<affiliation wicri:level="2">
<nlm:affiliation>Biosciences Division, Argonne National Laboratory, Lemont, IL 60490, USA. plarsen@anl.gov</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biosciences Division, Argonne National Laboratory, Lemont, IL 60490</wicri:regionArea>
<placeName>
<region type="state">Illinois</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Sreedasyam, Avinash" sort="Sreedasyam, Avinash" uniqKey="Sreedasyam A" first="Avinash" last="Sreedasyam">Avinash Sreedasyam</name>
</author>
<author>
<name sortKey="Trivedi, Geetika" sort="Trivedi, Geetika" uniqKey="Trivedi G" first="Geetika" last="Trivedi">Geetika Trivedi</name>
</author>
<author>
<name sortKey="Podila, Gopi K" sort="Podila, Gopi K" uniqKey="Podila G" first="Gopi K" last="Podila">Gopi K. Podila</name>
</author>
<author>
<name sortKey="Cseke, Leland J" sort="Cseke, Leland J" uniqKey="Cseke L" first="Leland J" last="Cseke">Leland J. Cseke</name>
</author>
<author>
<name sortKey="Collart, Frank R" sort="Collart, Frank R" uniqKey="Collart F" first="Frank R" last="Collart">Frank R. Collart</name>
</author>
</analytic>
<series>
<title level="j">BMC systems biology</title>
<idno type="eISSN">1752-0509</idno>
<imprint>
<date when="2011" type="published">2011</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Carbon (chemistry)</term>
<term>Computational Biology (methods)</term>
<term>Ecosystem (MeSH)</term>
<term>Fructose (chemistry)</term>
<term>Gene Expression Profiling (methods)</term>
<term>Gene Expression Regulation (MeSH)</term>
<term>Glucose (chemistry)</term>
<term>Metabolome (MeSH)</term>
<term>Models, Biological (MeSH)</term>
<term>Models, Genetic (MeSH)</term>
<term>Models, Statistical (MeSH)</term>
<term>Mycorrhizae (genetics)</term>
<term>Mycorrhizae (physiology)</term>
<term>Photosynthesis (MeSH)</term>
<term>Plant Roots (microbiology)</term>
<term>Signal Transduction (MeSH)</term>
<term>Soil Microbiology (MeSH)</term>
<term>Systems Biology (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Analyse de profil d'expression de gènes (méthodes)</term>
<term>Biologie des systèmes (MeSH)</term>
<term>Biologie informatique (méthodes)</term>
<term>Carbone (composition chimique)</term>
<term>Fructose (composition chimique)</term>
<term>Glucose (composition chimique)</term>
<term>Microbiologie du sol (MeSH)</term>
<term>Modèles biologiques (MeSH)</term>
<term>Modèles génétiques (MeSH)</term>
<term>Modèles statistiques (MeSH)</term>
<term>Mycorhizes (génétique)</term>
<term>Mycorhizes (physiologie)</term>
<term>Métabolome (MeSH)</term>
<term>Photosynthèse (MeSH)</term>
<term>Racines de plante (microbiologie)</term>
<term>Régulation de l'expression des gènes (MeSH)</term>
<term>Transduction du signal (MeSH)</term>
<term>Écosystème (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Carbon</term>
<term>Fructose</term>
<term>Glucose</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Carbone</term>
<term>Fructose</term>
<term>Glucose</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Mycorhizes</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Computational Biology</term>
<term>Gene Expression Profiling</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Racines de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Plant Roots</term>
</keywords>
<keywords scheme="MESH" qualifier="méthodes" xml:lang="fr">
<term>Analyse de profil d'expression de gènes</term>
<term>Biologie informatique</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Mycorhizes</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Ecosystem</term>
<term>Gene Expression Regulation</term>
<term>Metabolome</term>
<term>Models, Biological</term>
<term>Models, Genetic</term>
<term>Models, Statistical</term>
<term>Photosynthesis</term>
<term>Signal Transduction</term>
<term>Soil Microbiology</term>
<term>Systems Biology</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Biologie des systèmes</term>
<term>Microbiologie du sol</term>
<term>Modèles biologiques</term>
<term>Modèles génétiques</term>
<term>Modèles statistiques</term>
<term>Métabolome</term>
<term>Photosynthèse</term>
<term>Régulation de l'expression des gènes</term>
<term>Transduction du signal</term>
<term>Écosystème</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>Mycorrhizae, symbiotic interactions between soil fungi and tree roots, are ubiquitous in terrestrial ecosystems. The fungi contribute phosphorous, nitrogen and mobilized nutrients from organic matter in the soil and in return the fungus receives photosynthetically-derived carbohydrates. This union of plant and fungal metabolisms is the mycorrhizal metabolome. Understanding this symbiotic relationship at a molecular level provides important contributions to the understanding of forest ecosystems and global carbon cycling.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>We generated next generation short-read transcriptomic sequencing data from fully-formed ectomycorrhizae between Laccaria bicolor and aspen (Populus tremuloides) roots. The transcriptomic data was used to identify statistically significantly expressed gene models using a bootstrap-style approach, and these expressed genes were mapped to specific metabolic pathways. Integration of expressed genes that code for metabolic enzymes and the set of expressed membrane transporters generates a predictive model of the ectomycorrhizal metabolome. The generated model of mycorrhizal metabolome predicts that the specific compounds glycine, glutamate, and allantoin are synthesized by L. bicolor and that these compounds or their metabolites may be used for the benefit of aspen in exchange for the photosynthetically-derived sugars fructose and glucose.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>The analysis illustrates an approach to generate testable biological hypotheses to investigate the complex molecular interactions that drive ectomycorrhizal symbiosis. These models are consistent with experimental environmental data and provide insight into the molecular exchange processes for organisms in this complex ecosystem. The method used here for predicting metabolomic models of mycorrhizal systems from deep RNA sequencing data can be generalized and is broadly applicable to transcriptomic data derived from complex systems.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">21569493</PMID>
<DateCompleted>
<Year>2011</Year>
<Month>10</Month>
<Day>03</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1752-0509</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>5</Volume>
<PubDate>
<Year>2011</Year>
<Month>May</Month>
<Day>13</Day>
</PubDate>
</JournalIssue>
<Title>BMC systems biology</Title>
<ISOAbbreviation>BMC Syst Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>Using next generation transcriptome sequencing to predict an ectomycorrhizal metabolome.</ArticleTitle>
<Pagination>
<MedlinePgn>70</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/1752-0509-5-70</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Mycorrhizae, symbiotic interactions between soil fungi and tree roots, are ubiquitous in terrestrial ecosystems. The fungi contribute phosphorous, nitrogen and mobilized nutrients from organic matter in the soil and in return the fungus receives photosynthetically-derived carbohydrates. This union of plant and fungal metabolisms is the mycorrhizal metabolome. Understanding this symbiotic relationship at a molecular level provides important contributions to the understanding of forest ecosystems and global carbon cycling.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">We generated next generation short-read transcriptomic sequencing data from fully-formed ectomycorrhizae between Laccaria bicolor and aspen (Populus tremuloides) roots. The transcriptomic data was used to identify statistically significantly expressed gene models using a bootstrap-style approach, and these expressed genes were mapped to specific metabolic pathways. Integration of expressed genes that code for metabolic enzymes and the set of expressed membrane transporters generates a predictive model of the ectomycorrhizal metabolome. The generated model of mycorrhizal metabolome predicts that the specific compounds glycine, glutamate, and allantoin are synthesized by L. bicolor and that these compounds or their metabolites may be used for the benefit of aspen in exchange for the photosynthetically-derived sugars fructose and glucose.</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">The analysis illustrates an approach to generate testable biological hypotheses to investigate the complex molecular interactions that drive ectomycorrhizal symbiosis. These models are consistent with experimental environmental data and provide insight into the molecular exchange processes for organisms in this complex ecosystem. The method used here for predicting metabolomic models of mycorrhizal systems from deep RNA sequencing data can be generalized and is broadly applicable to transcriptomic data derived from complex systems.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Larsen</LastName>
<ForeName>Peter E</ForeName>
<Initials>PE</Initials>
<AffiliationInfo>
<Affiliation>Biosciences Division, Argonne National Laboratory, Lemont, IL 60490, USA. plarsen@anl.gov</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sreedasyam</LastName>
<ForeName>Avinash</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Trivedi</LastName>
<ForeName>Geetika</ForeName>
<Initials>G</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Podila</LastName>
<ForeName>Gopi K</ForeName>
<Initials>GK</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Cseke</LastName>
<ForeName>Leland J</ForeName>
<Initials>LJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Collart</LastName>
<ForeName>Frank R</ForeName>
<Initials>FR</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2011</Year>
<Month>05</Month>
<Day>13</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>BMC Syst Biol</MedlineTA>
<NlmUniqueID>101301827</NlmUniqueID>
<ISSNLinking>1752-0509</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>30237-26-4</RegistryNumber>
<NameOfSubstance UI="D005632">Fructose</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>7440-44-0</RegistryNumber>
<NameOfSubstance UI="D002244">Carbon</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>IY9XDZ35W2</RegistryNumber>
<NameOfSubstance UI="D005947">Glucose</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D002244" MajorTopicYN="N">Carbon</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019295" MajorTopicYN="N">Computational Biology</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017753" MajorTopicYN="N">Ecosystem</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005632" MajorTopicYN="N">Fructose</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020869" MajorTopicYN="N">Gene Expression Profiling</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005786" MajorTopicYN="Y">Gene Expression Regulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005947" MajorTopicYN="N">Glucose</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055442" MajorTopicYN="N">Metabolome</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008954" MajorTopicYN="N">Models, Biological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008957" MajorTopicYN="N">Models, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015233" MajorTopicYN="N">Models, Statistical</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010788" MajorTopicYN="N">Photosynthesis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012988" MajorTopicYN="N">Soil Microbiology</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D049490" MajorTopicYN="N">Systems Biology</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2010</Year>
<Month>10</Month>
<Day>29</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2011</Year>
<Month>05</Month>
<Day>13</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2011</Year>
<Month>5</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2011</Year>
<Month>5</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2011</Year>
<Month>10</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">21569493</ArticleId>
<ArticleId IdType="pii">1752-0509-5-70</ArticleId>
<ArticleId IdType="doi">10.1186/1752-0509-5-70</ArticleId>
<ArticleId IdType="pmc">PMC3114729</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Science. 2008 Aug 15;321(5891):956-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18599741</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2006 Jan 1;34(Database issue):D354-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16381885</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Dec;151(4):1991-2005</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19854859</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecology. 2006 Mar;87(3):563-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16602286</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2001 Oct;14(10):1140-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11605953</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2009 Mar;57(6):1092-102</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19054369</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2009 Oct;19(10):1884-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19661376</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1997 Jul;114(3):957-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9232877</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>CRC Crit Rev Microbiol. 1974;3(3):275-313</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4604803</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2007 Mar;27(3):413-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17241983</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2009 Mar;29(3):401-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19203963</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1998 Nov 19;222(2):203-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9831654</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2009;9:151</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20040108</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Genet. 2007 Feb;51(2):71-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17072660</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2009 May 8;324(5928):753-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19423817</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2008 Sep;18(9):1509-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18550803</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2008 Jul;5(7):621-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18516045</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Jul;153(3):1175-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20448102</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2003 Nov;13(11):2498-504</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14597658</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2001 Apr;111(4):419-426</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11299006</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1980 Apr;77(4):2113-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16592806</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2008;59(5):1097-108</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18272925</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2008 Jun;147(2):624-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18408046</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2009 Sep 1;25(17):2194-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19549630</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Mar 3;106(9):3264-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19208812</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1994 Dec 6;91(25):11841-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11607500</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Ecol Evol. 2001 May 1;16(5):248-254</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11301154</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2007 Jan;68(1):82-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17078984</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2010 Feb 15;26(4):493-500</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20022975</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2008 Feb;5(2):183-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18204455</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biosystems. 1975 Mar;6(3):153-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1120179</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Jan 30;104(5):1720-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17242358</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2008;180(2):343-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18665901</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 1996 Nov-Dec;16(11_12):941-948</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14871787</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Sep 15;313(5793):1596-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16973872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2008;180(2):379-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18665900</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2001 Feb;21(2-3):101-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11303640</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2009;10(3):R25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19261174</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1982 Jul;70(1):1-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16662425</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Microbiol. 2005;59:19-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16153162</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009;182(2):347-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19207688</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2007;174(1):137-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17335504</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Microbiol. 2008 Dec;57(6):620-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18836771</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods. 2009 Jul;48(3):249-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19336255</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2009 Nov;4(11):1024-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19829075</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2006;57(11):2651-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16820399</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1990 Jun;93(2):708-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16667527</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2011 Jan;39(Database issue):D225-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21109532</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 1999 Nov;12(11):1000-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10550896</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2008;8:19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18298811</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2009 Aug;12(4):508-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19540154</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2008 Mar 6;452(7183):88-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18322534</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Feb;134(2):664-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14764906</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2005 Jul;18(7):659-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16042012</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009;182(1):31-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19210725</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2000 May;25(1):25-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10802651</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2008 Feb;146(2):418-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18065556</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2005 Feb;165(2):599-611</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15720670</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2010;10:185</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20727216</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2008;180(2):365-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18627493</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2007 Sep;26(9):1529-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17492451</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2002 Apr;14(4):847-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11971139</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2003 Apr;13(2):59-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12682827</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2010;5(7):e9780</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20625404</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Illinois</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Collart, Frank R" sort="Collart, Frank R" uniqKey="Collart F" first="Frank R" last="Collart">Frank R. Collart</name>
<name sortKey="Cseke, Leland J" sort="Cseke, Leland J" uniqKey="Cseke L" first="Leland J" last="Cseke">Leland J. Cseke</name>
<name sortKey="Podila, Gopi K" sort="Podila, Gopi K" uniqKey="Podila G" first="Gopi K" last="Podila">Gopi K. Podila</name>
<name sortKey="Sreedasyam, Avinash" sort="Sreedasyam, Avinash" uniqKey="Sreedasyam A" first="Avinash" last="Sreedasyam">Avinash Sreedasyam</name>
<name sortKey="Trivedi, Geetika" sort="Trivedi, Geetika" uniqKey="Trivedi G" first="Geetika" last="Trivedi">Geetika Trivedi</name>
</noCountry>
<country name="États-Unis">
<region name="Illinois">
<name sortKey="Larsen, Peter E" sort="Larsen, Peter E" uniqKey="Larsen P" first="Peter E" last="Larsen">Peter E. Larsen</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002C56 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002C56 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:21569493
   |texte=   Using next generation transcriptome sequencing to predict an ectomycorrhizal metabolome.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:21569493" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020