Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Expansion and diversification of the SET domain gene family following whole-genome duplications in Populus trichocarpa.

Identifieur interne : 002A93 ( Main/Exploration ); précédent : 002A92; suivant : 002A94

Expansion and diversification of the SET domain gene family following whole-genome duplications in Populus trichocarpa.

Auteurs : Li Lei [République populaire de Chine] ; Shi-Liang Zhou ; Hong Ma ; Liang-Sheng Zhang

Source :

RBID : pubmed:22497662

Descripteurs français

English descriptors

Abstract

BACKGROUND

Histone lysine methylation modifies chromatin structure and regulates eukaryotic gene transcription and a variety of developmental and physiological processes. SET domain proteins are lysine methyltransferases containing the evolutionarily-conserved SET domain, which is known to be the catalytic domain.

RESULTS

We identified 59 SET genes in the Populus genome. Phylogenetic analyses of 106 SET genes from Populus and Arabidopsis supported the clustering of SET genes into six distinct subfamilies and identified 19 duplicated gene pairs in Populus. The chromosome locations of these gene pairs and the distribution of synonymous substitution rates showed that the expansion of the SET gene family might be caused by large-scale duplications in Populus. Comparison of gene structures and domain architectures of each duplicate pair indicated that divergence took place at the 3'- and 5'-terminal transcribed regions and at the N- and C-termini of the predicted proteins, respectively. Expression profile analysis of Populus SET genes suggested that most Populus SET genes were expressed widely, many with the highest expression in young leaves. In particular, the expression profiles of 12 of the 19 duplicated gene pairs fell into two types of expression patterns.

CONCLUSIONS

The 19 duplicated SET genes could have originated from whole genome duplication events. The differences in SET gene structure, domain architecture, and expression profiles in various tissues of Populus suggest that members of the SET gene family have a variety of developmental and physiological functions. Our study provides clues about the evolution of epigenetic regulation of chromatin structure and gene expression.


DOI: 10.1186/1471-2148-12-51
PubMed: 22497662
PubMed Central: PMC3402991


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Expansion and diversification of the SET domain gene family following whole-genome duplications in Populus trichocarpa.</title>
<author>
<name sortKey="Lei, Li" sort="Lei, Li" uniqKey="Lei L" first="Li" last="Lei">Li Lei</name>
<affiliation wicri:level="1">
<nlm:affiliation>1State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>1State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Zhou, Shi Liang" sort="Zhou, Shi Liang" uniqKey="Zhou S" first="Shi-Liang" last="Zhou">Shi-Liang Zhou</name>
</author>
<author>
<name sortKey="Ma, Hong" sort="Ma, Hong" uniqKey="Ma H" first="Hong" last="Ma">Hong Ma</name>
</author>
<author>
<name sortKey="Zhang, Liang Sheng" sort="Zhang, Liang Sheng" uniqKey="Zhang L" first="Liang-Sheng" last="Zhang">Liang-Sheng Zhang</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="RBID">pubmed:22497662</idno>
<idno type="pmid">22497662</idno>
<idno type="doi">10.1186/1471-2148-12-51</idno>
<idno type="pmc">PMC3402991</idno>
<idno type="wicri:Area/Main/Corpus">002A77</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002A77</idno>
<idno type="wicri:Area/Main/Curation">002A77</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002A77</idno>
<idno type="wicri:Area/Main/Exploration">002A77</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Expansion and diversification of the SET domain gene family following whole-genome duplications in Populus trichocarpa.</title>
<author>
<name sortKey="Lei, Li" sort="Lei, Li" uniqKey="Lei L" first="Li" last="Lei">Li Lei</name>
<affiliation wicri:level="1">
<nlm:affiliation>1State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>1State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Zhou, Shi Liang" sort="Zhou, Shi Liang" uniqKey="Zhou S" first="Shi-Liang" last="Zhou">Shi-Liang Zhou</name>
</author>
<author>
<name sortKey="Ma, Hong" sort="Ma, Hong" uniqKey="Ma H" first="Hong" last="Ma">Hong Ma</name>
</author>
<author>
<name sortKey="Zhang, Liang Sheng" sort="Zhang, Liang Sheng" uniqKey="Zhang L" first="Liang-Sheng" last="Zhang">Liang-Sheng Zhang</name>
</author>
</analytic>
<series>
<title level="j">BMC evolutionary biology</title>
<idno type="eISSN">1471-2148</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Evolution, Molecular (MeSH)</term>
<term>Gene Duplication (MeSH)</term>
<term>Gene Expression Profiling (MeSH)</term>
<term>Genome, Plant (MeSH)</term>
<term>Histone-Lysine N-Methyltransferase (genetics)</term>
<term>Multigene Family (MeSH)</term>
<term>Phylogeny (MeSH)</term>
<term>Populus (genetics)</term>
<term>Sequence Alignment (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Alignement de séquences (MeSH)</term>
<term>Analyse de profil d'expression de gènes (MeSH)</term>
<term>Duplication de gène (MeSH)</term>
<term>Famille multigénique (MeSH)</term>
<term>Génome végétal (MeSH)</term>
<term>Histone-lysine N-methyltransferase (génétique)</term>
<term>Phylogenèse (MeSH)</term>
<term>Populus (génétique)</term>
<term>Évolution moléculaire (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Histone-Lysine N-Methyltransferase</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Histone-lysine N-methyltransferase</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Evolution, Molecular</term>
<term>Gene Duplication</term>
<term>Gene Expression Profiling</term>
<term>Genome, Plant</term>
<term>Multigene Family</term>
<term>Phylogeny</term>
<term>Sequence Alignment</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Alignement de séquences</term>
<term>Analyse de profil d'expression de gènes</term>
<term>Duplication de gène</term>
<term>Famille multigénique</term>
<term>Génome végétal</term>
<term>Phylogenèse</term>
<term>Évolution moléculaire</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>Histone lysine methylation modifies chromatin structure and regulates eukaryotic gene transcription and a variety of developmental and physiological processes. SET domain proteins are lysine methyltransferases containing the evolutionarily-conserved SET domain, which is known to be the catalytic domain.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>We identified 59 SET genes in the Populus genome. Phylogenetic analyses of 106 SET genes from Populus and Arabidopsis supported the clustering of SET genes into six distinct subfamilies and identified 19 duplicated gene pairs in Populus. The chromosome locations of these gene pairs and the distribution of synonymous substitution rates showed that the expansion of the SET gene family might be caused by large-scale duplications in Populus. Comparison of gene structures and domain architectures of each duplicate pair indicated that divergence took place at the 3'- and 5'-terminal transcribed regions and at the N- and C-termini of the predicted proteins, respectively. Expression profile analysis of Populus SET genes suggested that most Populus SET genes were expressed widely, many with the highest expression in young leaves. In particular, the expression profiles of 12 of the 19 duplicated gene pairs fell into two types of expression patterns.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>The 19 duplicated SET genes could have originated from whole genome duplication events. The differences in SET gene structure, domain architecture, and expression profiles in various tissues of Populus suggest that members of the SET gene family have a variety of developmental and physiological functions. Our study provides clues about the evolution of epigenetic regulation of chromatin structure and gene expression.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">22497662</PMID>
<DateCompleted>
<Year>2012</Year>
<Month>10</Month>
<Day>15</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1471-2148</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>12</Volume>
<PubDate>
<Year>2012</Year>
<Month>Apr</Month>
<Day>12</Day>
</PubDate>
</JournalIssue>
<Title>BMC evolutionary biology</Title>
<ISOAbbreviation>BMC Evol Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>Expansion and diversification of the SET domain gene family following whole-genome duplications in Populus trichocarpa.</ArticleTitle>
<Pagination>
<MedlinePgn>51</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/1471-2148-12-51</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Histone lysine methylation modifies chromatin structure and regulates eukaryotic gene transcription and a variety of developmental and physiological processes. SET domain proteins are lysine methyltransferases containing the evolutionarily-conserved SET domain, which is known to be the catalytic domain.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">We identified 59 SET genes in the Populus genome. Phylogenetic analyses of 106 SET genes from Populus and Arabidopsis supported the clustering of SET genes into six distinct subfamilies and identified 19 duplicated gene pairs in Populus. The chromosome locations of these gene pairs and the distribution of synonymous substitution rates showed that the expansion of the SET gene family might be caused by large-scale duplications in Populus. Comparison of gene structures and domain architectures of each duplicate pair indicated that divergence took place at the 3'- and 5'-terminal transcribed regions and at the N- and C-termini of the predicted proteins, respectively. Expression profile analysis of Populus SET genes suggested that most Populus SET genes were expressed widely, many with the highest expression in young leaves. In particular, the expression profiles of 12 of the 19 duplicated gene pairs fell into two types of expression patterns.</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">The 19 duplicated SET genes could have originated from whole genome duplication events. The differences in SET gene structure, domain architecture, and expression profiles in various tissues of Populus suggest that members of the SET gene family have a variety of developmental and physiological functions. Our study provides clues about the evolution of epigenetic regulation of chromatin structure and gene expression.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Lei</LastName>
<ForeName>Li</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>1State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhou</LastName>
<ForeName>Shi-Liang</ForeName>
<Initials>SL</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ma</LastName>
<ForeName>Hong</ForeName>
<Initials>H</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Liang-Sheng</ForeName>
<Initials>LS</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>04</Month>
<Day>12</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>BMC Evol Biol</MedlineTA>
<NlmUniqueID>100966975</NlmUniqueID>
<ISSNLinking>1471-2148</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>EC 2.1.1.43</RegistryNumber>
<NameOfSubstance UI="D011495">Histone-Lysine N-Methyltransferase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D019143" MajorTopicYN="Y">Evolution, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020440" MajorTopicYN="Y">Gene Duplication</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020869" MajorTopicYN="N">Gene Expression Profiling</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018745" MajorTopicYN="Y">Genome, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011495" MajorTopicYN="N">Histone-Lysine N-Methyltransferase</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005810" MajorTopicYN="Y">Multigene Family</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="N">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016415" MajorTopicYN="N">Sequence Alignment</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2011</Year>
<Month>09</Month>
<Day>12</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2012</Year>
<Month>04</Month>
<Day>12</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>4</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>4</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2012</Year>
<Month>10</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">22497662</ArticleId>
<ArticleId IdType="pii">1471-2148-12-51</ArticleId>
<ArticleId IdType="doi">10.1186/1471-2148-12-51</ArticleId>
<ArticleId IdType="pmc">PMC3402991</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Genetics. 1999 Apr;151(4):1531-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10101175</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Apr 12;102(15):5454-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15800040</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2010 Apr 16;328(5976):368-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20395511</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2008 Sep;10(9):1114-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19160493</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2002 Jun 25;12(12):1052-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12123582</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yi Chuan. 2009 Feb;31(2):186-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19273428</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Bot Res. 2010 Jan 1;53:1-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20703330</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2007 Feb;24(2):482-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17148507</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Jan 20;106(3):835-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19126682</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2008 Dec;18(12):1944-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18832442</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2005;6(8):227</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16086857</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 Jul 10;424(6945):194-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12853957</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2004 Aug 19;5:113</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15318951</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2010;61:395-420</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20192747</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2012 Jan 24;109(4):1187-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22232673</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2003 Aug 12;19(12):1572-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12912839</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Oct 26;107(43):18557-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20937886</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2011 May 5;473(7345):97-100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21478875</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2006 Feb;23(2):469-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16280546</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2008 Jan;36(Database issue):D281-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18039703</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2007 Aug;24(8):1586-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17483113</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2006 Oct 4;25(19):4638-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16957776</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2003 Apr 15;13(8):627-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12699618</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Res. 2011 Mar;21(3):381-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21321607</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2001 Nov 1;29(21):4319-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11691919</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2006 Jan 1;34(Database issue):D247-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16381856</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Mol Life Sci. 2007 Mar;64(5):542-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17192808</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yi Chuan. 2007 Aug;29(8):1023-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17681935</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2010 Feb;11(2):97-108</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20051986</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 1998;14(9):755-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9918945</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2011 Apr;66(1):58-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21443623</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Syst Biol. 2003 Oct;52(5):696-704</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14530136</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Jun;132(2):907-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12805620</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2009 Oct;21(10):3257-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19855050</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Sep 15;313(5793):1596-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16973872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1997 Mar 6;386(6620):44-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9052779</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2006 Jul 1;34(Web Server issue):W609-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16845082</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2008 Sep 5;373(4):659-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18602372</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2004 Jan;9(1):49-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14729219</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2011 Apr;14(2):179-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21233005</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2011 Jun;30(6):1087-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21293861</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2005 Apr 6;24(7):1418-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15775980</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2007 May-Jun;1769(5-6):316-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17512990</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Structure. 2007 Jan;15(1):85-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17223535</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2000 Nov 10;290(5494):1151-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11073452</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2009 Oct;10(10):725-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19652647</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2008 Apr 25;320(5875):486-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18436778</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Evol Biol. 2011;11:63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21388541</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1998 Apr 17;280(5362):446-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9545225</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 Jun 13;300(5626):1701-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12805536</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 2006;411:134-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16939790</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Feb;149(2):981-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19091872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol Evol. 2011;3:1419-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22058183</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2007 Aug;24(8):1596-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17488738</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2010 Oct;22(10):3232-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21037105</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2007;58:435-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17280524</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Genet. 2010 Oct;26(10):425-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20708291</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2010;10:160</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20687943</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2005 Dec;7(12):1256-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16299497</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
<settlement>
<li>Pékin</li>
</settlement>
</list>
<tree>
<noCountry>
<name sortKey="Ma, Hong" sort="Ma, Hong" uniqKey="Ma H" first="Hong" last="Ma">Hong Ma</name>
<name sortKey="Zhang, Liang Sheng" sort="Zhang, Liang Sheng" uniqKey="Zhang L" first="Liang-Sheng" last="Zhang">Liang-Sheng Zhang</name>
<name sortKey="Zhou, Shi Liang" sort="Zhou, Shi Liang" uniqKey="Zhou S" first="Shi-Liang" last="Zhou">Shi-Liang Zhou</name>
</noCountry>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Lei, Li" sort="Lei, Li" uniqKey="Lei L" first="Li" last="Lei">Li Lei</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002A93 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002A93 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:22497662
   |texte=   Expansion and diversification of the SET domain gene family following whole-genome duplications in Populus trichocarpa.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:22497662" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020