Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

How does TKA kinematics vary with transverse plane alignment changes in a contemporary implant?

Identifieur interne : 002A42 ( Main/Exploration ); précédent : 002A41; suivant : 002A43

How does TKA kinematics vary with transverse plane alignment changes in a contemporary implant?

Auteurs : William M. Mihalko [États-Unis] ; Devin J. Conner ; Rodney Benner ; John L. Williams

Source :

RBID : pubmed:22033871

Descripteurs français

English descriptors

Abstract

BACKGROUND

Assessment of patient function after TKA often focuses on implant alignment and daily activity capabilities, but the functional results and kinematics of the TKA are not easily predicted by some of these parameters during surgery.

QUESTIONS/PURPOSES

We asked whether differences in implant alignment in the transverse plane may affect fluorokinematics and be one of the many variables that help explain the discrepancies in fluorokinematic results.

METHODS

We utilized a computer model (LifeMOD™/KneeSIM; LifeModeler, Inc, San Clemente, CA, USA) to show variability in polyethylene contact patterns. We imported components of a cruciate-retaining TKA into the model and subjected the systems to a simulated lunge. We modeled five different combinations of implant positioning in the transverse plane of both the femoral and tibial components in internal or external rotation and compared the resulting changes in joint rotations and displacements of these five variations to those for published fluorokinematic observations using the same modeled lunge-type maneuver for five patients.

RESULTS

We observed variations in AP translation of the lateral and medial femoral condyles resembling several of those in the literature for individual patients with the same cruciate-retaining knee implant. The largest AP translational changes were seen with the tibia internally rotated 5°. Using the five different implant transverse plane alignment scenarios resulted in a coefficient of determination of 0.6 for the linear regression when compared to five subjects from a published fluorokinematic study.

CONCLUSIONS

Variations in implant positioning may be responsible for variations in fluorokinematics reported for individual subjects with the same implant design.


DOI: 10.1007/s11999-011-2145-y
PubMed: 22033871
PubMed Central: PMC3237993


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">How does TKA kinematics vary with transverse plane alignment changes in a contemporary implant?</title>
<author>
<name sortKey="Mihalko, William M" sort="Mihalko, William M" uniqKey="Mihalko W" first="William M" last="Mihalko">William M. Mihalko</name>
<affiliation wicri:level="2">
<nlm:affiliation>Campbell Clinic Orthopaedics, University of Tennessee, 1458 West Poplar Avenue, Suite 100, Memphis, TN 38017, USA. wmihalko@campbellclinic.com</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Campbell Clinic Orthopaedics, University of Tennessee, 1458 West Poplar Avenue, Suite 100, Memphis, TN 38017</wicri:regionArea>
<placeName>
<region type="state">Tennessee</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Conner, Devin J" sort="Conner, Devin J" uniqKey="Conner D" first="Devin J" last="Conner">Devin J. Conner</name>
</author>
<author>
<name sortKey="Benner, Rodney" sort="Benner, Rodney" uniqKey="Benner R" first="Rodney" last="Benner">Rodney Benner</name>
</author>
<author>
<name sortKey="Williams, John L" sort="Williams, John L" uniqKey="Williams J" first="John L" last="Williams">John L. Williams</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="RBID">pubmed:22033871</idno>
<idno type="pmid">22033871</idno>
<idno type="doi">10.1007/s11999-011-2145-y</idno>
<idno type="pmc">PMC3237993</idno>
<idno type="wicri:Area/Main/Corpus">002C45</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002C45</idno>
<idno type="wicri:Area/Main/Curation">002C45</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002C45</idno>
<idno type="wicri:Area/Main/Exploration">002C45</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">How does TKA kinematics vary with transverse plane alignment changes in a contemporary implant?</title>
<author>
<name sortKey="Mihalko, William M" sort="Mihalko, William M" uniqKey="Mihalko W" first="William M" last="Mihalko">William M. Mihalko</name>
<affiliation wicri:level="2">
<nlm:affiliation>Campbell Clinic Orthopaedics, University of Tennessee, 1458 West Poplar Avenue, Suite 100, Memphis, TN 38017, USA. wmihalko@campbellclinic.com</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Campbell Clinic Orthopaedics, University of Tennessee, 1458 West Poplar Avenue, Suite 100, Memphis, TN 38017</wicri:regionArea>
<placeName>
<region type="state">Tennessee</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Conner, Devin J" sort="Conner, Devin J" uniqKey="Conner D" first="Devin J" last="Conner">Devin J. Conner</name>
</author>
<author>
<name sortKey="Benner, Rodney" sort="Benner, Rodney" uniqKey="Benner R" first="Rodney" last="Benner">Rodney Benner</name>
</author>
<author>
<name sortKey="Williams, John L" sort="Williams, John L" uniqKey="Williams J" first="John L" last="Williams">John L. Williams</name>
</author>
</analytic>
<series>
<title level="j">Clinical orthopaedics and related research</title>
<idno type="eISSN">1528-1132</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Arthroplasty, Replacement, Knee (methods)</term>
<term>Biomechanical Phenomena (MeSH)</term>
<term>Bone Malalignment (prevention & control)</term>
<term>Computer Simulation (MeSH)</term>
<term>Fluoroscopy (methods)</term>
<term>Humans (MeSH)</term>
<term>Knee Joint (surgery)</term>
<term>Knee Prosthesis (MeSH)</term>
<term>Linear Models (MeSH)</term>
<term>Prosthesis Design (MeSH)</term>
<term>Range of Motion, Articular (physiology)</term>
<term>Sensitivity and Specificity (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Amplitude articulaire (physiologie)</term>
<term>Arthroplastie prothétique de genou (méthodes)</term>
<term>Articulation du genou (chirurgie)</term>
<term>Conception de prothèse (MeSH)</term>
<term>Défaut d'alignement osseux (prévention et contrôle)</term>
<term>Humains (MeSH)</term>
<term>Modèles linéaires (MeSH)</term>
<term>Phénomènes biomécaniques (MeSH)</term>
<term>Prothèse de genou (MeSH)</term>
<term>Radioscopie (méthodes)</term>
<term>Sensibilité et spécificité (MeSH)</term>
<term>Simulation numérique (MeSH)</term>
</keywords>
<keywords scheme="MESH" qualifier="chirurgie" xml:lang="fr">
<term>Articulation du genou</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Arthroplasty, Replacement, Knee</term>
<term>Fluoroscopy</term>
</keywords>
<keywords scheme="MESH" qualifier="méthodes" xml:lang="fr">
<term>Arthroplastie prothétique de genou</term>
<term>Radioscopie</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Amplitude articulaire</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Range of Motion, Articular</term>
</keywords>
<keywords scheme="MESH" qualifier="prevention & control" xml:lang="en">
<term>Bone Malalignment</term>
</keywords>
<keywords scheme="MESH" qualifier="prévention et contrôle" xml:lang="fr">
<term>Défaut d'alignement osseux</term>
</keywords>
<keywords scheme="MESH" qualifier="surgery" xml:lang="en">
<term>Knee Joint</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biomechanical Phenomena</term>
<term>Computer Simulation</term>
<term>Humans</term>
<term>Knee Prosthesis</term>
<term>Linear Models</term>
<term>Prosthesis Design</term>
<term>Sensitivity and Specificity</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Conception de prothèse</term>
<term>Humains</term>
<term>Modèles linéaires</term>
<term>Phénomènes biomécaniques</term>
<term>Prothèse de genou</term>
<term>Sensibilité et spécificité</term>
<term>Simulation numérique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>Assessment of patient function after TKA often focuses on implant alignment and daily activity capabilities, but the functional results and kinematics of the TKA are not easily predicted by some of these parameters during surgery.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>QUESTIONS/PURPOSES</b>
</p>
<p>We asked whether differences in implant alignment in the transverse plane may affect fluorokinematics and be one of the many variables that help explain the discrepancies in fluorokinematic results.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>METHODS</b>
</p>
<p>We utilized a computer model (LifeMOD™/KneeSIM; LifeModeler, Inc, San Clemente, CA, USA) to show variability in polyethylene contact patterns. We imported components of a cruciate-retaining TKA into the model and subjected the systems to a simulated lunge. We modeled five different combinations of implant positioning in the transverse plane of both the femoral and tibial components in internal or external rotation and compared the resulting changes in joint rotations and displacements of these five variations to those for published fluorokinematic observations using the same modeled lunge-type maneuver for five patients.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>We observed variations in AP translation of the lateral and medial femoral condyles resembling several of those in the literature for individual patients with the same cruciate-retaining knee implant. The largest AP translational changes were seen with the tibia internally rotated 5°. Using the five different implant transverse plane alignment scenarios resulted in a coefficient of determination of 0.6 for the linear regression when compared to five subjects from a published fluorokinematic study.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>Variations in implant positioning may be responsible for variations in fluorokinematics reported for individual subjects with the same implant design.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">22033871</PMID>
<DateCompleted>
<Year>2012</Year>
<Month>08</Month>
<Day>16</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1528-1132</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>470</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2012</Year>
<Month>Jan</Month>
</PubDate>
</JournalIssue>
<Title>Clinical orthopaedics and related research</Title>
<ISOAbbreviation>Clin Orthop Relat Res</ISOAbbreviation>
</Journal>
<ArticleTitle>How does TKA kinematics vary with transverse plane alignment changes in a contemporary implant?</ArticleTitle>
<Pagination>
<MedlinePgn>186-92</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s11999-011-2145-y</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Assessment of patient function after TKA often focuses on implant alignment and daily activity capabilities, but the functional results and kinematics of the TKA are not easily predicted by some of these parameters during surgery.</AbstractText>
<AbstractText Label="QUESTIONS/PURPOSES" NlmCategory="OBJECTIVE">We asked whether differences in implant alignment in the transverse plane may affect fluorokinematics and be one of the many variables that help explain the discrepancies in fluorokinematic results.</AbstractText>
<AbstractText Label="METHODS" NlmCategory="METHODS">We utilized a computer model (LifeMOD™/KneeSIM; LifeModeler, Inc, San Clemente, CA, USA) to show variability in polyethylene contact patterns. We imported components of a cruciate-retaining TKA into the model and subjected the systems to a simulated lunge. We modeled five different combinations of implant positioning in the transverse plane of both the femoral and tibial components in internal or external rotation and compared the resulting changes in joint rotations and displacements of these five variations to those for published fluorokinematic observations using the same modeled lunge-type maneuver for five patients.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">We observed variations in AP translation of the lateral and medial femoral condyles resembling several of those in the literature for individual patients with the same cruciate-retaining knee implant. The largest AP translational changes were seen with the tibia internally rotated 5°. Using the five different implant transverse plane alignment scenarios resulted in a coefficient of determination of 0.6 for the linear regression when compared to five subjects from a published fluorokinematic study.</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">Variations in implant positioning may be responsible for variations in fluorokinematics reported for individual subjects with the same implant design.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Mihalko</LastName>
<ForeName>William M</ForeName>
<Initials>WM</Initials>
<AffiliationInfo>
<Affiliation>Campbell Clinic Orthopaedics, University of Tennessee, 1458 West Poplar Avenue, Suite 100, Memphis, TN 38017, USA. wmihalko@campbellclinic.com</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Conner</LastName>
<ForeName>Devin J</ForeName>
<Initials>DJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Benner</LastName>
<ForeName>Rodney</ForeName>
<Initials>R</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Williams</LastName>
<ForeName>John L</ForeName>
<Initials>JL</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D003160">Comparative Study</PublicationType>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Clin Orthop Relat Res</MedlineTA>
<NlmUniqueID>0075674</NlmUniqueID>
<ISSNLinking>0009-921X</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>AIM</CitationSubset>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D019645" MajorTopicYN="N">Arthroplasty, Replacement, Knee</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001696" MajorTopicYN="N">Biomechanical Phenomena</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017760" MajorTopicYN="N">Bone Malalignment</DescriptorName>
<QualifierName UI="Q000517" MajorTopicYN="N">prevention & control</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003198" MajorTopicYN="Y">Computer Simulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005471" MajorTopicYN="N">Fluoroscopy</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007719" MajorTopicYN="N">Knee Joint</DescriptorName>
<QualifierName UI="Q000601" MajorTopicYN="Y">surgery</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007720" MajorTopicYN="Y">Knee Prosthesis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016014" MajorTopicYN="N">Linear Models</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011474" MajorTopicYN="N">Prosthesis Design</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016059" MajorTopicYN="N">Range of Motion, Articular</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012680" MajorTopicYN="N">Sensitivity and Specificity</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2011</Year>
<Month>10</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2011</Year>
<Month>10</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2012</Year>
<Month>8</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">22033871</ArticleId>
<ArticleId IdType="doi">10.1007/s11999-011-2145-y</ArticleId>
<ArticleId IdType="pmc">PMC3237993</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Acta Orthop Scand. 2000 Dec;71(6):603-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11145388</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bone Joint Surg Am. 2010 Sep 15;92(12):2143-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20844155</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Orthop Relat Res. 2002 Oct;(403):143-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12360020</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Orthop Relat Res. 2002 Nov;(404):7-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12439231</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Orthop Relat Res. 2003 May;(410):148-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12771825</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bone Joint Surg Am. 1985 Oct;67(8):1188-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4055843</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biomech. 1988;21(5):401-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3417692</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Orthop Relat Res. 1994 Feb;(299):31-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8119035</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biomech. 2005 Feb;38(2):349-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15598463</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Biomech (Bristol, Avon). 2005 Aug;20(7):661-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15961202</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bone Joint Surg Am. 2006 Feb;88(2):395-402</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16452753</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Orthop Relat Res. 2007 Nov;464:117-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17975375</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Arthroplasty. 2008 Jan;23(1):41-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18165027</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bone Joint Surg Br. 2008 Aug;90(8):1032-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18669958</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Orthop Relat Res. 2008 Nov;466(11):2751-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18825470</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Can J Surg. 2009 Oct;52(5):413-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19865577</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arthritis Res Ther. 2009;11(5):R139</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19772556</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Biomech (Bristol, Avon). 2010 Jan;25(1):83-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19853334</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Orthop Relat Res. 2010 Jan;468(1):57-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19844772</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Arthroplasty. 2010 Sep;25(6):964-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19729277</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Orthop Relat Res. 2010 Oct;468(10):2734-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20352384</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Orthop Relat Res. 2001 Nov;(392):46-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11716424</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Tennessee</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Benner, Rodney" sort="Benner, Rodney" uniqKey="Benner R" first="Rodney" last="Benner">Rodney Benner</name>
<name sortKey="Conner, Devin J" sort="Conner, Devin J" uniqKey="Conner D" first="Devin J" last="Conner">Devin J. Conner</name>
<name sortKey="Williams, John L" sort="Williams, John L" uniqKey="Williams J" first="John L" last="Williams">John L. Williams</name>
</noCountry>
<country name="États-Unis">
<region name="Tennessee">
<name sortKey="Mihalko, William M" sort="Mihalko, William M" uniqKey="Mihalko W" first="William M" last="Mihalko">William M. Mihalko</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002A42 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002A42 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:22033871
   |texte=   How does TKA kinematics vary with transverse plane alignment changes in a contemporary implant?
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:22033871" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020