Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Integrated analysis of hydrothermal flow through pretreatment.

Identifieur interne : 002A15 ( Main/Exploration ); précédent : 002A14; suivant : 002A16

Integrated analysis of hydrothermal flow through pretreatment.

Auteurs : Veronique Archambault-Leger [États-Unis] ; Xiongjun Shao ; Lee R. Lynd

Source :

RBID : pubmed:22812930

Abstract

UNLABELLED

BACKGROUND

The impact of hydrothermal flowthrough (FT) pretreatment severity on pretreatment and solubilization performance metrics was evaluated for three milled feedstocks (corn stover, bagasse, and poplar) and two conversion systems (simultaneous saccharification and fermentation using yeast and fungal cellulase, and fermentation by Clostridium thermocellum).

RESULTS

Compared to batch pretreatment, FT pretreatment consistently resulted in higher XMG recovery, higher removal of non-carbohydrate carbon and higher glucan solubilization by simultaneous saccharification and fermentation (SSF). XMG recovery was above 90% for FT pretreatment below 4.1 severity but decreased at higher severities, particularly for bagasse. Removal of non-carbohydrate carbon during FT pretreatment increased from 65% at low severity to 80% at high severity for corn stover, and from 40% to 70% for bagasse and poplar.Solids obtained by FT pretreatment were amenable to high conversion for all of the feedstocks and conversion systems examined. The optimal time and temperature for FT pretreatment on poplar were found to be 16 min and 210°C. At these conditions, SSF glucan conversion was about 85%, 94% of the XMG was removed, and 62% of the non carbohydrate mass was solubilized. Solubilization of FT-pretreated poplar was compared for C. thermocellum fermentation (10% inoculum), and for yeast-fungal cellulase SSF (5% inoculum, cellulase loading of 5 and 10 FPU/g glucan supplemented with β-glucosidase at 15 and 30 U/g glucan). Under the conditions tested, which featured low solids concentration, C. thermocellum fermentation achieved faster rates and more complete conversion of FT-pretreated poplar than did SSF. Compared to SSF, solubilization by C. thermocellum was 30% higher after 4 days, and was over twice as fast on ball-milled FT-pretreated poplar.

CONCLUSIONS

XMG removal trends were similar between feedstocks whereas glucan conversion trends were significantly different, suggesting that factors in addition to XMG removal impact amenability of glucan to enzymatic attack. Corn stover exhibited higher hydrolysis yields than bagasse or poplar, which could be due to higher removal of non-carbohydrate carbon. XMG in bagasse is more easily degraded than XMG in corn stover and poplar. Conversion of FT-pretreated substrates at low concentration was faster and more complete for C. thermocellum than for SSF.


DOI: 10.1186/1754-6834-5-49
PubMed: 22812930
PubMed Central: PMC3495837


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Integrated analysis of hydrothermal flow through pretreatment.</title>
<author>
<name sortKey="Archambault Leger, Veronique" sort="Archambault Leger, Veronique" uniqKey="Archambault Leger V" first="Veronique" last="Archambault-Leger">Veronique Archambault-Leger</name>
<affiliation wicri:level="1">
<nlm:affiliation>Dartmouth College, Hanover, NH, 03755, USA. Lee.R.Lynd@Dartmouth.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Dartmouth College, Hanover, NH, 03755</wicri:regionArea>
<wicri:noRegion>03755</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Shao, Xiongjun" sort="Shao, Xiongjun" uniqKey="Shao X" first="Xiongjun" last="Shao">Xiongjun Shao</name>
</author>
<author>
<name sortKey="Lynd, Lee R" sort="Lynd, Lee R" uniqKey="Lynd L" first="Lee R" last="Lynd">Lee R. Lynd</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="RBID">pubmed:22812930</idno>
<idno type="pmid">22812930</idno>
<idno type="doi">10.1186/1754-6834-5-49</idno>
<idno type="pmc">PMC3495837</idno>
<idno type="wicri:Area/Main/Corpus">002960</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002960</idno>
<idno type="wicri:Area/Main/Curation">002960</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002960</idno>
<idno type="wicri:Area/Main/Exploration">002960</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Integrated analysis of hydrothermal flow through pretreatment.</title>
<author>
<name sortKey="Archambault Leger, Veronique" sort="Archambault Leger, Veronique" uniqKey="Archambault Leger V" first="Veronique" last="Archambault-Leger">Veronique Archambault-Leger</name>
<affiliation wicri:level="1">
<nlm:affiliation>Dartmouth College, Hanover, NH, 03755, USA. Lee.R.Lynd@Dartmouth.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Dartmouth College, Hanover, NH, 03755</wicri:regionArea>
<wicri:noRegion>03755</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Shao, Xiongjun" sort="Shao, Xiongjun" uniqKey="Shao X" first="Xiongjun" last="Shao">Xiongjun Shao</name>
</author>
<author>
<name sortKey="Lynd, Lee R" sort="Lynd, Lee R" uniqKey="Lynd L" first="Lee R" last="Lynd">Lee R. Lynd</name>
</author>
</analytic>
<series>
<title level="j">Biotechnology for biofuels</title>
<idno type="eISSN">1754-6834</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>UNLABELLED</b>
</p>
<p></p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>The impact of hydrothermal flowthrough (FT) pretreatment severity on pretreatment and solubilization performance metrics was evaluated for three milled feedstocks (corn stover, bagasse, and poplar) and two conversion systems (simultaneous saccharification and fermentation using yeast and fungal cellulase, and fermentation by Clostridium thermocellum).</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>Compared to batch pretreatment, FT pretreatment consistently resulted in higher XMG recovery, higher removal of non-carbohydrate carbon and higher glucan solubilization by simultaneous saccharification and fermentation (SSF). XMG recovery was above 90% for FT pretreatment below 4.1 severity but decreased at higher severities, particularly for bagasse. Removal of non-carbohydrate carbon during FT pretreatment increased from 65% at low severity to 80% at high severity for corn stover, and from 40% to 70% for bagasse and poplar.Solids obtained by FT pretreatment were amenable to high conversion for all of the feedstocks and conversion systems examined. The optimal time and temperature for FT pretreatment on poplar were found to be 16 min and 210°C. At these conditions, SSF glucan conversion was about 85%, 94% of the XMG was removed, and 62% of the non carbohydrate mass was solubilized. Solubilization of FT-pretreated poplar was compared for C. thermocellum fermentation (10% inoculum), and for yeast-fungal cellulase SSF (5% inoculum, cellulase loading of 5 and 10 FPU/g glucan supplemented with β-glucosidase at 15 and 30 U/g glucan). Under the conditions tested, which featured low solids concentration, C. thermocellum fermentation achieved faster rates and more complete conversion of FT-pretreated poplar than did SSF. Compared to SSF, solubilization by C. thermocellum was 30% higher after 4 days, and was over twice as fast on ball-milled FT-pretreated poplar.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>XMG removal trends were similar between feedstocks whereas glucan conversion trends were significantly different, suggesting that factors in addition to XMG removal impact amenability of glucan to enzymatic attack. Corn stover exhibited higher hydrolysis yields than bagasse or poplar, which could be due to higher removal of non-carbohydrate carbon. XMG in bagasse is more easily degraded than XMG in corn stover and poplar. Conversion of FT-pretreated substrates at low concentration was faster and more complete for C. thermocellum than for SSF.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">22812930</PMID>
<DateCompleted>
<Year>2012</Year>
<Month>11</Month>
<Day>19</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>28</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1754-6834</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>5</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2012</Year>
<Month>Jul</Month>
<Day>19</Day>
</PubDate>
</JournalIssue>
<Title>Biotechnology for biofuels</Title>
<ISOAbbreviation>Biotechnol Biofuels</ISOAbbreviation>
</Journal>
<ArticleTitle>Integrated analysis of hydrothermal flow through pretreatment.</ArticleTitle>
<Pagination>
<MedlinePgn>49</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/1754-6834-5-49</ELocationID>
<Abstract>
<AbstractText Label="UNLABELLED"></AbstractText>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">The impact of hydrothermal flowthrough (FT) pretreatment severity on pretreatment and solubilization performance metrics was evaluated for three milled feedstocks (corn stover, bagasse, and poplar) and two conversion systems (simultaneous saccharification and fermentation using yeast and fungal cellulase, and fermentation by Clostridium thermocellum).</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">Compared to batch pretreatment, FT pretreatment consistently resulted in higher XMG recovery, higher removal of non-carbohydrate carbon and higher glucan solubilization by simultaneous saccharification and fermentation (SSF). XMG recovery was above 90% for FT pretreatment below 4.1 severity but decreased at higher severities, particularly for bagasse. Removal of non-carbohydrate carbon during FT pretreatment increased from 65% at low severity to 80% at high severity for corn stover, and from 40% to 70% for bagasse and poplar.Solids obtained by FT pretreatment were amenable to high conversion for all of the feedstocks and conversion systems examined. The optimal time and temperature for FT pretreatment on poplar were found to be 16 min and 210°C. At these conditions, SSF glucan conversion was about 85%, 94% of the XMG was removed, and 62% of the non carbohydrate mass was solubilized. Solubilization of FT-pretreated poplar was compared for C. thermocellum fermentation (10% inoculum), and for yeast-fungal cellulase SSF (5% inoculum, cellulase loading of 5 and 10 FPU/g glucan supplemented with β-glucosidase at 15 and 30 U/g glucan). Under the conditions tested, which featured low solids concentration, C. thermocellum fermentation achieved faster rates and more complete conversion of FT-pretreated poplar than did SSF. Compared to SSF, solubilization by C. thermocellum was 30% higher after 4 days, and was over twice as fast on ball-milled FT-pretreated poplar.</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">XMG removal trends were similar between feedstocks whereas glucan conversion trends were significantly different, suggesting that factors in addition to XMG removal impact amenability of glucan to enzymatic attack. Corn stover exhibited higher hydrolysis yields than bagasse or poplar, which could be due to higher removal of non-carbohydrate carbon. XMG in bagasse is more easily degraded than XMG in corn stover and poplar. Conversion of FT-pretreated substrates at low concentration was faster and more complete for C. thermocellum than for SSF.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Archambault-Leger</LastName>
<ForeName>Veronique</ForeName>
<Initials>V</Initials>
<AffiliationInfo>
<Affiliation>Dartmouth College, Hanover, NH, 03755, USA. Lee.R.Lynd@Dartmouth.edu.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Shao</LastName>
<ForeName>Xiongjun</ForeName>
<Initials>X</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Lynd</LastName>
<ForeName>Lee R</ForeName>
<Initials>LR</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>07</Month>
<Day>19</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Biotechnol Biofuels</MedlineTA>
<NlmUniqueID>101316935</NlmUniqueID>
<ISSNLinking>1754-6834</ISSNLinking>
</MedlineJournalInfo>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2012</Year>
<Month>03</Month>
<Day>25</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2012</Year>
<Month>07</Month>
<Day>02</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>7</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>7</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2012</Year>
<Month>7</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">22812930</ArticleId>
<ArticleId IdType="pii">1754-6834-5-49</ArticleId>
<ArticleId IdType="doi">10.1186/1754-6834-5-49</ArticleId>
<ArticleId IdType="pmc">PMC3495837</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Genome Biol. 2008;9(12):242</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19133109</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 1997 Jun;47(6):625-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9237386</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2008 Feb;26(2):169-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18259168</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2005 Dec;96(18):1959-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16112483</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2010 Nov 26;330(6008):1176</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21109651</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2008 Sep;99(13):5756-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18096381</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2005 Apr;96(6):673-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15588770</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Biochem Biotechnol. 2004 Spring;113-116:977-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15054246</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2007 Feb 9;315(5813):804-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17289988</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Jan 27;311(5760):506-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16439656</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Biotechnol. 2012 Jun;23(3):396-405</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22176748</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Bioeng. 2004 Apr 5;86(1):88-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15007845</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Chem. 2003 Jan 15;75(2):219-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12553755</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2010 Jul;101(13):4851-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20042329</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Prog. 1999 Oct 1;15(5):794-803</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10514249</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Adv. 2006 Sep-Oct;24(5):452-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16690241</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2011 Sep;102(17):8040-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21683579</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Lynd, Lee R" sort="Lynd, Lee R" uniqKey="Lynd L" first="Lee R" last="Lynd">Lee R. Lynd</name>
<name sortKey="Shao, Xiongjun" sort="Shao, Xiongjun" uniqKey="Shao X" first="Xiongjun" last="Shao">Xiongjun Shao</name>
</noCountry>
<country name="États-Unis">
<noRegion>
<name sortKey="Archambault Leger, Veronique" sort="Archambault Leger, Veronique" uniqKey="Archambault Leger V" first="Veronique" last="Archambault-Leger">Veronique Archambault-Leger</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002A15 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002A15 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:22812930
   |texte=   Integrated analysis of hydrothermal flow through pretreatment.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:22812930" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020