Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Spatial pattern of long-distance symplasmic transport and communication in trees.

Identifieur interne : 002483 ( Main/Exploration ); précédent : 002482; suivant : 002484

Spatial pattern of long-distance symplasmic transport and communication in trees.

Auteurs : Katarzyna Sokołowska [Pologne] ; Alicja Maria Brysz [Pologne] ; Beata Zag Rska-Marek [Pologne]

Source :

RBID : pubmed:23989002

Descripteurs français

English descriptors

Abstract

Symplasmic short- and long-distance communication may be regulated at different levels of plant body organization. It depends on cell-to-cell transport modulated by plasmodesmata conductivity and frequency but above all on morphogenetic fields that integrate a plant at the supracellular level. Their control of physiological and developmental processes is especially important in trees, where the continuum consists of 3-dimensional systems of: 1) stem cells in cambium, and 2) living parenchyma cells in the secondary conductive tissues. We found that long-distance symplasmic transport in trees is spatially regulated. Uneven distribution of fluorescent tracer in cambial cells along the branches examined illustrates an unknown intrinsic phenomenon that can possibly be important for plant organism integration. Here we illustrate the spatial dynamics of symplasmic transport in cambium, test and exclude the role of callose in its regulation, and discuss the mechanism that could possibly be responsible for the maintenance of this spatial pattern.

DOI: 10.4161/psb.26191
PubMed: 23989002
PubMed Central: PMC4091345


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Spatial pattern of long-distance symplasmic transport and communication in trees.</title>
<author>
<name sortKey="Sokolowska, Katarzyna" sort="Sokolowska, Katarzyna" uniqKey="Sokolowska K" first="Katarzyna" last="Sokołowska">Katarzyna Sokołowska</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Experimental Biology; Department of Plant Developmental Biology; Faculty of Biological Sciences; University of Wrocław; Kanonia, Wroclaw, Poland.</nlm:affiliation>
<country xml:lang="fr">Pologne</country>
<wicri:regionArea>Institute of Experimental Biology; Department of Plant Developmental Biology; Faculty of Biological Sciences; University of Wrocław; Kanonia, Wroclaw</wicri:regionArea>
<wicri:noRegion>Wroclaw</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Brysz, Alicja Maria" sort="Brysz, Alicja Maria" uniqKey="Brysz A" first="Alicja Maria" last="Brysz">Alicja Maria Brysz</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Experimental Biology; Department of Plant Developmental Biology; Faculty of Biological Sciences; University of Wrocław; Kanonia, Wroclaw, Poland.</nlm:affiliation>
<country xml:lang="fr">Pologne</country>
<wicri:regionArea>Institute of Experimental Biology; Department of Plant Developmental Biology; Faculty of Biological Sciences; University of Wrocław; Kanonia, Wroclaw</wicri:regionArea>
<wicri:noRegion>Wroclaw</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zag Rska Marek, Beata" sort="Zag Rska Marek, Beata" uniqKey="Zag Rska Marek B" first="Beata" last="Zag Rska-Marek">Beata Zag Rska-Marek</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Experimental Biology; Department of Plant Developmental Biology; Faculty of Biological Sciences; University of Wrocław; Kanonia, Wroclaw, Poland.</nlm:affiliation>
<country xml:lang="fr">Pologne</country>
<wicri:regionArea>Institute of Experimental Biology; Department of Plant Developmental Biology; Faculty of Biological Sciences; University of Wrocław; Kanonia, Wroclaw</wicri:regionArea>
<wicri:noRegion>Wroclaw</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:23989002</idno>
<idno type="pmid">23989002</idno>
<idno type="doi">10.4161/psb.26191</idno>
<idno type="pmc">PMC4091345</idno>
<idno type="wicri:Area/Main/Corpus">002484</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002484</idno>
<idno type="wicri:Area/Main/Curation">002484</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002484</idno>
<idno type="wicri:Area/Main/Exploration">002484</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Spatial pattern of long-distance symplasmic transport and communication in trees.</title>
<author>
<name sortKey="Sokolowska, Katarzyna" sort="Sokolowska, Katarzyna" uniqKey="Sokolowska K" first="Katarzyna" last="Sokołowska">Katarzyna Sokołowska</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Experimental Biology; Department of Plant Developmental Biology; Faculty of Biological Sciences; University of Wrocław; Kanonia, Wroclaw, Poland.</nlm:affiliation>
<country xml:lang="fr">Pologne</country>
<wicri:regionArea>Institute of Experimental Biology; Department of Plant Developmental Biology; Faculty of Biological Sciences; University of Wrocław; Kanonia, Wroclaw</wicri:regionArea>
<wicri:noRegion>Wroclaw</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Brysz, Alicja Maria" sort="Brysz, Alicja Maria" uniqKey="Brysz A" first="Alicja Maria" last="Brysz">Alicja Maria Brysz</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Experimental Biology; Department of Plant Developmental Biology; Faculty of Biological Sciences; University of Wrocław; Kanonia, Wroclaw, Poland.</nlm:affiliation>
<country xml:lang="fr">Pologne</country>
<wicri:regionArea>Institute of Experimental Biology; Department of Plant Developmental Biology; Faculty of Biological Sciences; University of Wrocław; Kanonia, Wroclaw</wicri:regionArea>
<wicri:noRegion>Wroclaw</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zag Rska Marek, Beata" sort="Zag Rska Marek, Beata" uniqKey="Zag Rska Marek B" first="Beata" last="Zag Rska-Marek">Beata Zag Rska-Marek</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Experimental Biology; Department of Plant Developmental Biology; Faculty of Biological Sciences; University of Wrocław; Kanonia, Wroclaw, Poland.</nlm:affiliation>
<country xml:lang="fr">Pologne</country>
<wicri:regionArea>Institute of Experimental Biology; Department of Plant Developmental Biology; Faculty of Biological Sciences; University of Wrocław; Kanonia, Wroclaw</wicri:regionArea>
<wicri:noRegion>Wroclaw</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Plant signaling & behavior</title>
<idno type="eISSN">1559-2324</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Acer (metabolism)</term>
<term>Biological Transport (MeSH)</term>
<term>Cambium (cytology)</term>
<term>Cambium (metabolism)</term>
<term>Fluoresceins (metabolism)</term>
<term>Glucans (metabolism)</term>
<term>Signal Transduction (MeSH)</term>
<term>Trees (metabolism)</term>
<term>Xylem (cytology)</term>
<term>Xylem (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Acer (métabolisme)</term>
<term>Arbres (métabolisme)</term>
<term>Cambium (cytologie)</term>
<term>Cambium (métabolisme)</term>
<term>Fluorescéines (métabolisme)</term>
<term>Glucanes (métabolisme)</term>
<term>Transduction du signal (MeSH)</term>
<term>Transport biologique (MeSH)</term>
<term>Xylème (cytologie)</term>
<term>Xylème (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Fluoresceins</term>
<term>Glucans</term>
</keywords>
<keywords scheme="MESH" qualifier="cytologie" xml:lang="fr">
<term>Cambium</term>
<term>Xylème</term>
</keywords>
<keywords scheme="MESH" qualifier="cytology" xml:lang="en">
<term>Cambium</term>
<term>Xylem</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Acer</term>
<term>Cambium</term>
<term>Trees</term>
<term>Xylem</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Acer</term>
<term>Arbres</term>
<term>Cambium</term>
<term>Fluorescéines</term>
<term>Glucanes</term>
<term>Xylème</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biological Transport</term>
<term>Signal Transduction</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Transduction du signal</term>
<term>Transport biologique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Symplasmic short- and long-distance communication may be regulated at different levels of plant body organization. It depends on cell-to-cell transport modulated by plasmodesmata conductivity and frequency but above all on morphogenetic fields that integrate a plant at the supracellular level. Their control of physiological and developmental processes is especially important in trees, where the continuum consists of 3-dimensional systems of: 1) stem cells in cambium, and 2) living parenchyma cells in the secondary conductive tissues. We found that long-distance symplasmic transport in trees is spatially regulated. Uneven distribution of fluorescent tracer in cambial cells along the branches examined illustrates an unknown intrinsic phenomenon that can possibly be important for plant organism integration. Here we illustrate the spatial dynamics of symplasmic transport in cambium, test and exclude the role of callose in its regulation, and discuss the mechanism that could possibly be responsible for the maintenance of this spatial pattern. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">23989002</PMID>
<DateCompleted>
<Year>2014</Year>
<Month>12</Month>
<Day>15</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1559-2324</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>8</Volume>
<Issue>11</Issue>
<PubDate>
<Year>2013</Year>
<Month>Nov</Month>
</PubDate>
</JournalIssue>
<Title>Plant signaling & behavior</Title>
<ISOAbbreviation>Plant Signal Behav</ISOAbbreviation>
</Journal>
<ArticleTitle>Spatial pattern of long-distance symplasmic transport and communication in trees.</ArticleTitle>
<Pagination>
<MedlinePgn>e26191</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.4161/psb.26191</ELocationID>
<ELocationID EIdType="pii" ValidYN="Y">e26191</ELocationID>
<Abstract>
<AbstractText>Symplasmic short- and long-distance communication may be regulated at different levels of plant body organization. It depends on cell-to-cell transport modulated by plasmodesmata conductivity and frequency but above all on morphogenetic fields that integrate a plant at the supracellular level. Their control of physiological and developmental processes is especially important in trees, where the continuum consists of 3-dimensional systems of: 1) stem cells in cambium, and 2) living parenchyma cells in the secondary conductive tissues. We found that long-distance symplasmic transport in trees is spatially regulated. Uneven distribution of fluorescent tracer in cambial cells along the branches examined illustrates an unknown intrinsic phenomenon that can possibly be important for plant organism integration. Here we illustrate the spatial dynamics of symplasmic transport in cambium, test and exclude the role of callose in its regulation, and discuss the mechanism that could possibly be responsible for the maintenance of this spatial pattern. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Sokołowska</LastName>
<ForeName>Katarzyna</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Institute of Experimental Biology; Department of Plant Developmental Biology; Faculty of Biological Sciences; University of Wrocław; Kanonia, Wroclaw, Poland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Brysz</LastName>
<ForeName>Alicja Maria</ForeName>
<Initials>AM</Initials>
<AffiliationInfo>
<Affiliation>Institute of Experimental Biology; Department of Plant Developmental Biology; Faculty of Biological Sciences; University of Wrocław; Kanonia, Wroclaw, Poland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zagórska-Marek</LastName>
<ForeName>Beata</ForeName>
<Initials>B</Initials>
<AffiliationInfo>
<Affiliation>Institute of Experimental Biology; Department of Plant Developmental Biology; Faculty of Biological Sciences; University of Wrocław; Kanonia, Wroclaw, Poland.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>08</Month>
<Day>29</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Plant Signal Behav</MedlineTA>
<NlmUniqueID>101291431</NlmUniqueID>
<ISSNLinking>1559-2316</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005452">Fluoresceins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005936">Glucans</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>3301-79-9</RegistryNumber>
<NameOfSubstance UI="C024098">6-carboxyfluorescein</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9064-51-1</RegistryNumber>
<NameOfSubstance UI="C048306">callose</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D031002" MajorTopicYN="N">Acer</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001692" MajorTopicYN="N">Biological Transport</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058506" MajorTopicYN="N">Cambium</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="N">cytology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005452" MajorTopicYN="N">Fluoresceins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005936" MajorTopicYN="N">Glucans</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="Y">Signal Transduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014197" MajorTopicYN="N">Trees</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D052584" MajorTopicYN="N">Xylem</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="N">cytology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Acer pseudoplatanus</Keyword>
<Keyword MajorTopicYN="N">Populus tremulax tremuloides</Keyword>
<Keyword MajorTopicYN="N">callose</Keyword>
<Keyword MajorTopicYN="N">cambium</Keyword>
<Keyword MajorTopicYN="N">plasmodesmata</Keyword>
<Keyword MajorTopicYN="N">rays</Keyword>
<Keyword MajorTopicYN="N">spatial patterns</Keyword>
<Keyword MajorTopicYN="N">symplasmic transport</Keyword>
<Keyword MajorTopicYN="N">xylem parenchyma cells</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>8</Month>
<Day>31</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>8</Month>
<Day>31</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>12</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23989002</ArticleId>
<ArticleId IdType="pii">26191</ArticleId>
<ArticleId IdType="doi">10.4161/psb.26191</ArticleId>
<ArticleId IdType="pmc">PMC4091345</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Am J Bot. 2009 Aug;96(8):1399-408</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21628287</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2011 Mar;34(3):514-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21118423</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protoplasma. 2001;216(1-2):47-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11732196</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Bot. 2012 Nov;99(11):1745-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23125435</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 1990 Aug;182(1):9-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24196993</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Aug 19;100(17):10096-101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12909722</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2010 Sep;106(3):385-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20584737</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2004 Jul;24(7):785-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15123450</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2000 Jan;210(2):269-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10664133</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Pologne</li>
</country>
</list>
<tree>
<country name="Pologne">
<noRegion>
<name sortKey="Sokolowska, Katarzyna" sort="Sokolowska, Katarzyna" uniqKey="Sokolowska K" first="Katarzyna" last="Sokołowska">Katarzyna Sokołowska</name>
</noRegion>
<name sortKey="Brysz, Alicja Maria" sort="Brysz, Alicja Maria" uniqKey="Brysz A" first="Alicja Maria" last="Brysz">Alicja Maria Brysz</name>
<name sortKey="Zag Rska Marek, Beata" sort="Zag Rska Marek, Beata" uniqKey="Zag Rska Marek B" first="Beata" last="Zag Rska-Marek">Beata Zag Rska-Marek</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002483 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002483 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:23989002
   |texte=   Spatial pattern of long-distance symplasmic transport and communication in trees.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:23989002" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020