Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The GreenCut: re-evaluation of physiological role of previously studied proteins and potential novel protein functions.

Identifieur interne : 002470 ( Main/Exploration ); précédent : 002469; suivant : 002471

The GreenCut: re-evaluation of physiological role of previously studied proteins and potential novel protein functions.

Auteurs : Mark L. Heinnickel [États-Unis] ; Arthur R. Grossman

Source :

RBID : pubmed:23873414

Descripteurs français

English descriptors

Abstract

Based on comparative genomics, a list of proteins present in the green algal, flowering and nonflowering plant lineages, but not detected in nonphotosynthetic organisms, was assembled (Merchant et al., Science 318:245-250, 2007; Karpowicz et al., J Biol Chem 286:21427-21439, 2011). This protein grouping, previously designated the GreenCut, was established using stringent comparative genomic criteria; they are those Chlamydomonas reinhardtii proteins with orthologs in Arabidopsis thaliana, Physcomitrella patens, Oryza sativa, Populus tricocarpa and at least one of the three Ostreococcus species with fully sequenced genomes, but not in bacteria, yeast, fungi or mammals. Many GreenCut proteins are also present in red algae and diatoms and a subset of 189 have been identified as encoded on nearly all cyanobacterial genomes. Of the current GreenCut proteins (597 in total), approximately half have been studied previously. The functions or activities of a number of these proteins have been deduced from phenotypic analyses of mutants (defective for genes encoding specific GreenCut proteins) of A. thaliana, and in many cases the assigned functions do not exist in C. reinhardtii. Therefore, precise physiological functions of several previously studied GreenCut proteins are still not clear. The GreenCut also contains a number of proteins with certain conserved domains. Three of the most highly conserved domains are the FK506 binding, cyclophilin and PAP fibrillin domains; most members of these gene families are not well characterized. In general, our analysis of the GreenCut indicates that many processes critical to green lineage organisms remain unstudied or poorly characterized. We have begun to examine the functions of some GreenCut proteins in detail. For example, our work on the CPLD38 protein has demonstrated that it has an essential role in photosynthetic function and the stability of the cytochrome b 6 f complex.

DOI: 10.1007/s11120-013-9882-6
PubMed: 23873414


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The GreenCut: re-evaluation of physiological role of previously studied proteins and potential novel protein functions.</title>
<author>
<name sortKey="Heinnickel, Mark L" sort="Heinnickel, Mark L" uniqKey="Heinnickel M" first="Mark L" last="Heinnickel">Mark L. Heinnickel</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Biology, Carnegie Institute for Science, 260 Panama St, Stanford, CA, USA, mlh300@stanford.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Department of Plant Biology, Carnegie Institute for Science, 260 Panama St, Stanford, CA, USA</wicri:regionArea>
<wicri:noRegion>USA</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Grossman, Arthur R" sort="Grossman, Arthur R" uniqKey="Grossman A" first="Arthur R" last="Grossman">Arthur R. Grossman</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:23873414</idno>
<idno type="pmid">23873414</idno>
<idno type="doi">10.1007/s11120-013-9882-6</idno>
<idno type="wicri:Area/Main/Corpus">002525</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002525</idno>
<idno type="wicri:Area/Main/Curation">002525</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002525</idno>
<idno type="wicri:Area/Main/Exploration">002525</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The GreenCut: re-evaluation of physiological role of previously studied proteins and potential novel protein functions.</title>
<author>
<name sortKey="Heinnickel, Mark L" sort="Heinnickel, Mark L" uniqKey="Heinnickel M" first="Mark L" last="Heinnickel">Mark L. Heinnickel</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Biology, Carnegie Institute for Science, 260 Panama St, Stanford, CA, USA, mlh300@stanford.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Department of Plant Biology, Carnegie Institute for Science, 260 Panama St, Stanford, CA, USA</wicri:regionArea>
<wicri:noRegion>USA</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Grossman, Arthur R" sort="Grossman, Arthur R" uniqKey="Grossman A" first="Arthur R" last="Grossman">Arthur R. Grossman</name>
</author>
</analytic>
<series>
<title level="j">Photosynthesis research</title>
<idno type="eISSN">1573-5079</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Databases, Protein (MeSH)</term>
<term>Genomics (MeSH)</term>
<term>Mutant Proteins (metabolism)</term>
<term>Photosynthesis (MeSH)</term>
<term>Plant Proteins (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Bases de données de protéines (MeSH)</term>
<term>Génomique (MeSH)</term>
<term>Photosynthèse (MeSH)</term>
<term>Protéines mutantes (métabolisme)</term>
<term>Protéines végétales (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Mutant Proteins</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Protéines mutantes</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Databases, Protein</term>
<term>Genomics</term>
<term>Photosynthesis</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Bases de données de protéines</term>
<term>Génomique</term>
<term>Photosynthèse</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Based on comparative genomics, a list of proteins present in the green algal, flowering and nonflowering plant lineages, but not detected in nonphotosynthetic organisms, was assembled (Merchant et al., Science 318:245-250, 2007; Karpowicz et al., J Biol Chem 286:21427-21439, 2011). This protein grouping, previously designated the GreenCut, was established using stringent comparative genomic criteria; they are those Chlamydomonas reinhardtii proteins with orthologs in Arabidopsis thaliana, Physcomitrella patens, Oryza sativa, Populus tricocarpa and at least one of the three Ostreococcus species with fully sequenced genomes, but not in bacteria, yeast, fungi or mammals. Many GreenCut proteins are also present in red algae and diatoms and a subset of 189 have been identified as encoded on nearly all cyanobacterial genomes. Of the current GreenCut proteins (597 in total), approximately half have been studied previously. The functions or activities of a number of these proteins have been deduced from phenotypic analyses of mutants (defective for genes encoding specific GreenCut proteins) of A. thaliana, and in many cases the assigned functions do not exist in C. reinhardtii. Therefore, precise physiological functions of several previously studied GreenCut proteins are still not clear. The GreenCut also contains a number of proteins with certain conserved domains. Three of the most highly conserved domains are the FK506 binding, cyclophilin and PAP fibrillin domains; most members of these gene families are not well characterized. In general, our analysis of the GreenCut indicates that many processes critical to green lineage organisms remain unstudied or poorly characterized. We have begun to examine the functions of some GreenCut proteins in detail. For example, our work on the CPLD38 protein has demonstrated that it has an essential role in photosynthetic function and the stability of the cytochrome b 6 f complex. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">23873414</PMID>
<DateCompleted>
<Year>2014</Year>
<Month>06</Month>
<Day>17</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>30</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1573-5079</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>116</Volume>
<Issue>2-3</Issue>
<PubDate>
<Year>2013</Year>
<Month>Oct</Month>
</PubDate>
</JournalIssue>
<Title>Photosynthesis research</Title>
<ISOAbbreviation>Photosynth Res</ISOAbbreviation>
</Journal>
<ArticleTitle>The GreenCut: re-evaluation of physiological role of previously studied proteins and potential novel protein functions.</ArticleTitle>
<Pagination>
<MedlinePgn>427-36</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s11120-013-9882-6</ELocationID>
<Abstract>
<AbstractText>Based on comparative genomics, a list of proteins present in the green algal, flowering and nonflowering plant lineages, but not detected in nonphotosynthetic organisms, was assembled (Merchant et al., Science 318:245-250, 2007; Karpowicz et al., J Biol Chem 286:21427-21439, 2011). This protein grouping, previously designated the GreenCut, was established using stringent comparative genomic criteria; they are those Chlamydomonas reinhardtii proteins with orthologs in Arabidopsis thaliana, Physcomitrella patens, Oryza sativa, Populus tricocarpa and at least one of the three Ostreococcus species with fully sequenced genomes, but not in bacteria, yeast, fungi or mammals. Many GreenCut proteins are also present in red algae and diatoms and a subset of 189 have been identified as encoded on nearly all cyanobacterial genomes. Of the current GreenCut proteins (597 in total), approximately half have been studied previously. The functions or activities of a number of these proteins have been deduced from phenotypic analyses of mutants (defective for genes encoding specific GreenCut proteins) of A. thaliana, and in many cases the assigned functions do not exist in C. reinhardtii. Therefore, precise physiological functions of several previously studied GreenCut proteins are still not clear. The GreenCut also contains a number of proteins with certain conserved domains. Three of the most highly conserved domains are the FK506 binding, cyclophilin and PAP fibrillin domains; most members of these gene families are not well characterized. In general, our analysis of the GreenCut indicates that many processes critical to green lineage organisms remain unstudied or poorly characterized. We have begun to examine the functions of some GreenCut proteins in detail. For example, our work on the CPLD38 protein has demonstrated that it has an essential role in photosynthetic function and the stability of the cytochrome b 6 f complex. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Heinnickel</LastName>
<ForeName>Mark L</ForeName>
<Initials>ML</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Biology, Carnegie Institute for Science, 260 Panama St, Stanford, CA, USA, mlh300@stanford.edu.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Grossman</LastName>
<ForeName>Arthur R</ForeName>
<Initials>AR</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>07</Month>
<Day>20</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Netherlands</Country>
<MedlineTA>Photosynth Res</MedlineTA>
<NlmUniqueID>100954728</NlmUniqueID>
<ISSNLinking>0166-8595</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D050505">Mutant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D030562" MajorTopicYN="Y">Databases, Protein</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D023281" MajorTopicYN="N">Genomics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D050505" MajorTopicYN="N">Mutant Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010788" MajorTopicYN="N">Photosynthesis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2013</Year>
<Month>02</Month>
<Day>26</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2013</Year>
<Month>07</Month>
<Day>01</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>7</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>7</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>6</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23873414</ArticleId>
<ArticleId IdType="doi">10.1007/s11120-013-9882-6</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Exp Bot. 2012 May;63(9):3367-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22140246</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Sep 7;101(36):13374-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15326298</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiology. 2012 Sep;158(Pt 9):2440-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22767544</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Genet. 2008;42:463-515</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18983262</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2005 Feb;4(2):230-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15701785</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Methods. 2011 Jul 27;7:24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21794168</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2003 Aug;15(8):1781-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12897252</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Photochem Photobiol. 2008 Nov-Dec;84(6):1349-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19067956</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2010 Mar;192(6):1700-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20081034</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Sep 1;106(35):15067-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19666544</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2010 Nov;22(11):3692-709</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21045165</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2009 Sep;10(5):621-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19694953</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2009 Nov 26;462(7272):518-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19940928</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Aug 15;103(33):12631-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16894144</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2007 Oct 12;318(5848):245-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17932292</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 Nov 7;302(5647):1009-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14526088</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2012 Oct;160(2):897-905</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22858633</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2011 May 5;473(7345):55-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21499260</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2006 Mar;29(3):315-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17080588</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2012 Jan;40(Database issue):D1202-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22140109</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2001 Jun 21;411(6840):909-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11418848</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2008 Aug;55(4):639-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18445132</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2009 Oct;50(10):1801-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19717822</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2009 Nov;2(6):1127-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19995722</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Nov 26;99(24):15806-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12424338</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 Jun;19(6):1885-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17601829</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Apr;134(4):1248-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15047905</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2007 Jun;12(6):260-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17499005</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2006 Jun 26;580(15):3671-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16765949</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Integr Plant Biol. 2009 Aug;51(8):751-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19686372</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Soc Trans. 2010 Apr;38(2):651-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20298238</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2011 Aug;1807(8):897-905</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21108925</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2012 Jan;158(1):190-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22074709</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Photosynth Res. 2010 Nov;106(1-2):3-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20490922</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 Nov;19(11):3549-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18032630</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1994 Jan;6(1):119-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8130642</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2008 Feb;49(2):135-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18178586</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2013 Mar 8;288(10):7024-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23303190</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2012 Dec;160(4):1911-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23043079</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Photosynth Res. 2012 Oct;114(1):1-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22941557</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2012 Dec;160(4):2202-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23027666</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2001 Oct 30;1507(1-3):100-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11687210</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2002 Jan;14(1):211-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11826309</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Genet. 1995;29:231-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8825475</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2013 Apr;36(4):736-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23046215</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Cell Biol. 1993 Sep;3(9):308-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14731848</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2009 Apr;58(2):287-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19170932</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2011 Aug;16(8):432-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21571574</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2006 Aug;18(8):1908-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16798888</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2007;58:199-217</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17201689</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2012 Mar;158(3):1172-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22274653</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biochem. 2011 Jun;149(6):655-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21524994</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Feb;137(2):545-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15653810</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Jul;141(3):870-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16679416</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2010 Aug;1797(8):1449-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20388491</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2012 Feb;35(2):347-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21554328</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2011 Jun 17;286(24):21427-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21515685</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2000 Jan 27;403(6768):391-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10667783</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2000 Mar;21(5):483-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10758499</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biol (Stuttg). 2008 Jul;10 (4):451-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18557905</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2011 Aug;1807(8):912-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21167125</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2010 May;23(5):578-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20367466</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Mar 8;277(10):8354-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11719511</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Dec 23;105(51):20546-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19074271</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2003 Jul;15(7):1552-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12837946</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2009 Nov;2(6):1289-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19843617</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 Nov;145(3):668-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17827269</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Grossman, Arthur R" sort="Grossman, Arthur R" uniqKey="Grossman A" first="Arthur R" last="Grossman">Arthur R. Grossman</name>
</noCountry>
<country name="États-Unis">
<noRegion>
<name sortKey="Heinnickel, Mark L" sort="Heinnickel, Mark L" uniqKey="Heinnickel M" first="Mark L" last="Heinnickel">Mark L. Heinnickel</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002470 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002470 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:23873414
   |texte=   The GreenCut: re-evaluation of physiological role of previously studied proteins and potential novel protein functions.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:23873414" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020