Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A gene stacking approach leads to engineered plants with highly increased galactan levels in Arabidopsis.

Identifieur interne : 002400 ( Main/Exploration ); précédent : 002399; suivant : 002401

A gene stacking approach leads to engineered plants with highly increased galactan levels in Arabidopsis.

Auteurs : Vibe M. Gondolf ; Rhea Stoppel ; Berit Ebert ; Carsten Rautengarten ; April Jm Liwanag ; Dominique Loqué ; Henrik V. Scheller

Source :

RBID : pubmed:25492673

Descripteurs français

English descriptors

Abstract

BACKGROUND

Engineering of plants with a composition of lignocellulosic biomass that is more suitable for downstream processing is of high interest for next-generation biofuel production. Lignocellulosic biomass contains a high proportion of pentose residues, which are more difficult to convert into fuels than hexoses. Therefore, increasing the hexose/pentose ratio in biomass is one approach for biomass improvement. A genetic engineering approach was used to investigate whether the amount of pectic galactan can be specifically increased in cell walls of Arabidopsis fiber cells, which in turn could provide a potential source of readily fermentable galactose.

RESULTS

First it was tested if overexpression of various plant UDP-glucose 4-epimerases (UGEs) could increase the availability of UDP-galactose and thereby increase the biosynthesis of galactan. Constitutive and tissue-specific expression of a poplar UGE and three Arabidopsis UGEs in Arabidopsis plants could not significantly increase the amount of cell wall bound galactose. We then investigated co-overexpression of AtUGE2 together with the β-1,4-galactan synthase GalS1. Co-overexpression of AtUGE2 and GalS1 led to over 80% increase in cell wall galactose levels in Arabidopsis stems, providing evidence that these proteins work synergistically. Furthermore, AtUGE2 and GalS1 overexpression in combination with overexpression of the NST1 master regulator for secondary cell wall biosynthesis resulted in increased thickness of fiber cell walls in addition to the high cell wall galactose levels. Immunofluorescence microscopy confirmed that the increased galactose was present as β-1,4-galactan in secondary cell walls.

CONCLUSIONS

This approach clearly indicates that simultaneous overexpression of AtUGE2 and GalS1 increases the cell wall galactose to much higher levels than can be achieved by overexpressing either one of these proteins alone. Moreover, the increased galactan content in fiber cells while improving the biomass composition had no impact on plant growth and development and hence on the overall biomass amount. Thus, we could show that the gene stacking approach described here is a promising method to engineer advanced feedstocks for biofuel production.


DOI: 10.1186/s12870-014-0344-x
PubMed: 25492673
PubMed Central: PMC4268804


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">A gene stacking approach leads to engineered plants with highly increased galactan levels in Arabidopsis.</title>
<author>
<name sortKey="Gondolf, Vibe M" sort="Gondolf, Vibe M" uniqKey="Gondolf V" first="Vibe M" last="Gondolf">Vibe M. Gondolf</name>
</author>
<author>
<name sortKey="Stoppel, Rhea" sort="Stoppel, Rhea" uniqKey="Stoppel R" first="Rhea" last="Stoppel">Rhea Stoppel</name>
</author>
<author>
<name sortKey="Ebert, Berit" sort="Ebert, Berit" uniqKey="Ebert B" first="Berit" last="Ebert">Berit Ebert</name>
</author>
<author>
<name sortKey="Rautengarten, Carsten" sort="Rautengarten, Carsten" uniqKey="Rautengarten C" first="Carsten" last="Rautengarten">Carsten Rautengarten</name>
</author>
<author>
<name sortKey="Liwanag, April Jm" sort="Liwanag, April Jm" uniqKey="Liwanag A" first="April Jm" last="Liwanag">April Jm Liwanag</name>
</author>
<author>
<name sortKey="Loque, Dominique" sort="Loque, Dominique" uniqKey="Loque D" first="Dominique" last="Loqué">Dominique Loqué</name>
</author>
<author>
<name sortKey="Scheller, Henrik V" sort="Scheller, Henrik V" uniqKey="Scheller H" first="Henrik V" last="Scheller">Henrik V. Scheller</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:25492673</idno>
<idno type="pmid">25492673</idno>
<idno type="doi">10.1186/s12870-014-0344-x</idno>
<idno type="pmc">PMC4268804</idno>
<idno type="wicri:Area/Main/Corpus">001E80</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001E80</idno>
<idno type="wicri:Area/Main/Curation">001E80</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001E80</idno>
<idno type="wicri:Area/Main/Exploration">001E80</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">A gene stacking approach leads to engineered plants with highly increased galactan levels in Arabidopsis.</title>
<author>
<name sortKey="Gondolf, Vibe M" sort="Gondolf, Vibe M" uniqKey="Gondolf V" first="Vibe M" last="Gondolf">Vibe M. Gondolf</name>
</author>
<author>
<name sortKey="Stoppel, Rhea" sort="Stoppel, Rhea" uniqKey="Stoppel R" first="Rhea" last="Stoppel">Rhea Stoppel</name>
</author>
<author>
<name sortKey="Ebert, Berit" sort="Ebert, Berit" uniqKey="Ebert B" first="Berit" last="Ebert">Berit Ebert</name>
</author>
<author>
<name sortKey="Rautengarten, Carsten" sort="Rautengarten, Carsten" uniqKey="Rautengarten C" first="Carsten" last="Rautengarten">Carsten Rautengarten</name>
</author>
<author>
<name sortKey="Liwanag, April Jm" sort="Liwanag, April Jm" uniqKey="Liwanag A" first="April Jm" last="Liwanag">April Jm Liwanag</name>
</author>
<author>
<name sortKey="Loque, Dominique" sort="Loque, Dominique" uniqKey="Loque D" first="Dominique" last="Loqué">Dominique Loqué</name>
</author>
<author>
<name sortKey="Scheller, Henrik V" sort="Scheller, Henrik V" uniqKey="Scheller H" first="Henrik V" last="Scheller">Henrik V. Scheller</name>
</author>
</analytic>
<series>
<title level="j">BMC plant biology</title>
<idno type="eISSN">1471-2229</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Arabidopsis (genetics)</term>
<term>Arabidopsis (metabolism)</term>
<term>Arabidopsis Proteins (genetics)</term>
<term>Arabidopsis Proteins (metabolism)</term>
<term>Biofuels (analysis)</term>
<term>Breeding (MeSH)</term>
<term>Cell Wall (metabolism)</term>
<term>Galactans (metabolism)</term>
<term>Galactose (metabolism)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Plant Proteins (genetics)</term>
<term>Plant Proteins (metabolism)</term>
<term>Plants, Genetically Modified (genetics)</term>
<term>Plants, Genetically Modified (metabolism)</term>
<term>Populus (genetics)</term>
<term>Populus (metabolism)</term>
<term>Promoter Regions, Genetic (MeSH)</term>
<term>UDPglucose 4-Epimerase (genetics)</term>
<term>UDPglucose 4-Epimerase (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Arabidopsis (génétique)</term>
<term>Arabidopsis (métabolisme)</term>
<term>Biocarburants (analyse)</term>
<term>Galactanes (métabolisme)</term>
<term>Galactose (métabolisme)</term>
<term>Paroi cellulaire (métabolisme)</term>
<term>Populus (génétique)</term>
<term>Populus (métabolisme)</term>
<term>Protéines d'Arabidopsis (génétique)</term>
<term>Protéines d'Arabidopsis (métabolisme)</term>
<term>Protéines végétales (génétique)</term>
<term>Protéines végétales (métabolisme)</term>
<term>Régions promotrices (génétique) (MeSH)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Sélection (MeSH)</term>
<term>UDP glucose 4-epimerase (génétique)</term>
<term>UDP glucose 4-epimerase (métabolisme)</term>
<term>Végétaux génétiquement modifiés (génétique)</term>
<term>Végétaux génétiquement modifiés (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analysis" xml:lang="en">
<term>Biofuels</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Arabidopsis Proteins</term>
<term>Plant Proteins</term>
<term>UDPglucose 4-Epimerase</term>
</keywords>
<keywords scheme="MESH" qualifier="analyse" xml:lang="fr">
<term>Biocarburants</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Arabidopsis</term>
<term>Plants, Genetically Modified</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Arabidopsis</term>
<term>Populus</term>
<term>Protéines d'Arabidopsis</term>
<term>Protéines végétales</term>
<term>UDP glucose 4-epimerase</term>
<term>Végétaux génétiquement modifiés</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Arabidopsis</term>
<term>Arabidopsis Proteins</term>
<term>Cell Wall</term>
<term>Galactans</term>
<term>Galactose</term>
<term>Plant Proteins</term>
<term>Plants, Genetically Modified</term>
<term>Populus</term>
<term>UDPglucose 4-Epimerase</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Arabidopsis</term>
<term>Galactanes</term>
<term>Galactose</term>
<term>Paroi cellulaire</term>
<term>Populus</term>
<term>Protéines d'Arabidopsis</term>
<term>Protéines végétales</term>
<term>UDP glucose 4-epimerase</term>
<term>Végétaux génétiquement modifiés</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Breeding</term>
<term>Gene Expression Regulation, Plant</term>
<term>Promoter Regions, Genetic</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Régions promotrices (génétique)</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Sélection</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>Engineering of plants with a composition of lignocellulosic biomass that is more suitable for downstream processing is of high interest for next-generation biofuel production. Lignocellulosic biomass contains a high proportion of pentose residues, which are more difficult to convert into fuels than hexoses. Therefore, increasing the hexose/pentose ratio in biomass is one approach for biomass improvement. A genetic engineering approach was used to investigate whether the amount of pectic galactan can be specifically increased in cell walls of Arabidopsis fiber cells, which in turn could provide a potential source of readily fermentable galactose.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>First it was tested if overexpression of various plant UDP-glucose 4-epimerases (UGEs) could increase the availability of UDP-galactose and thereby increase the biosynthesis of galactan. Constitutive and tissue-specific expression of a poplar UGE and three Arabidopsis UGEs in Arabidopsis plants could not significantly increase the amount of cell wall bound galactose. We then investigated co-overexpression of AtUGE2 together with the β-1,4-galactan synthase GalS1. Co-overexpression of AtUGE2 and GalS1 led to over 80% increase in cell wall galactose levels in Arabidopsis stems, providing evidence that these proteins work synergistically. Furthermore, AtUGE2 and GalS1 overexpression in combination with overexpression of the NST1 master regulator for secondary cell wall biosynthesis resulted in increased thickness of fiber cell walls in addition to the high cell wall galactose levels. Immunofluorescence microscopy confirmed that the increased galactose was present as β-1,4-galactan in secondary cell walls.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>This approach clearly indicates that simultaneous overexpression of AtUGE2 and GalS1 increases the cell wall galactose to much higher levels than can be achieved by overexpressing either one of these proteins alone. Moreover, the increased galactan content in fiber cells while improving the biomass composition had no impact on plant growth and development and hence on the overall biomass amount. Thus, we could show that the gene stacking approach described here is a promising method to engineer advanced feedstocks for biofuel production.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">25492673</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>11</Month>
<Day>02</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1471-2229</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>14</Volume>
<PubDate>
<Year>2014</Year>
<Month>Dec</Month>
<Day>10</Day>
</PubDate>
</JournalIssue>
<Title>BMC plant biology</Title>
<ISOAbbreviation>BMC Plant Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>A gene stacking approach leads to engineered plants with highly increased galactan levels in Arabidopsis.</ArticleTitle>
<Pagination>
<MedlinePgn>344</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/s12870-014-0344-x</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Engineering of plants with a composition of lignocellulosic biomass that is more suitable for downstream processing is of high interest for next-generation biofuel production. Lignocellulosic biomass contains a high proportion of pentose residues, which are more difficult to convert into fuels than hexoses. Therefore, increasing the hexose/pentose ratio in biomass is one approach for biomass improvement. A genetic engineering approach was used to investigate whether the amount of pectic galactan can be specifically increased in cell walls of Arabidopsis fiber cells, which in turn could provide a potential source of readily fermentable galactose.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">First it was tested if overexpression of various plant UDP-glucose 4-epimerases (UGEs) could increase the availability of UDP-galactose and thereby increase the biosynthesis of galactan. Constitutive and tissue-specific expression of a poplar UGE and three Arabidopsis UGEs in Arabidopsis plants could not significantly increase the amount of cell wall bound galactose. We then investigated co-overexpression of AtUGE2 together with the β-1,4-galactan synthase GalS1. Co-overexpression of AtUGE2 and GalS1 led to over 80% increase in cell wall galactose levels in Arabidopsis stems, providing evidence that these proteins work synergistically. Furthermore, AtUGE2 and GalS1 overexpression in combination with overexpression of the NST1 master regulator for secondary cell wall biosynthesis resulted in increased thickness of fiber cell walls in addition to the high cell wall galactose levels. Immunofluorescence microscopy confirmed that the increased galactose was present as β-1,4-galactan in secondary cell walls.</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">This approach clearly indicates that simultaneous overexpression of AtUGE2 and GalS1 increases the cell wall galactose to much higher levels than can be achieved by overexpressing either one of these proteins alone. Moreover, the increased galactan content in fiber cells while improving the biomass composition had no impact on plant growth and development and hence on the overall biomass amount. Thus, we could show that the gene stacking approach described here is a promising method to engineer advanced feedstocks for biofuel production.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Gondolf</LastName>
<ForeName>Vibe M</ForeName>
<Initials>VM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Stoppel</LastName>
<ForeName>Rhea</ForeName>
<Initials>R</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ebert</LastName>
<ForeName>Berit</ForeName>
<Initials>B</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Rautengarten</LastName>
<ForeName>Carsten</ForeName>
<Initials>C</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Liwanag</LastName>
<ForeName>April Jm</ForeName>
<Initials>AJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Loqué</LastName>
<ForeName>Dominique</ForeName>
<Initials>D</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Scheller</LastName>
<ForeName>Henrik V</ForeName>
<Initials>HV</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>12</Month>
<Day>10</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>BMC Plant Biol</MedlineTA>
<NlmUniqueID>100967807</NlmUniqueID>
<ISSNLinking>1471-2229</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029681">Arabidopsis Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D056804">Biofuels</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005685">Galactans</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 5.1.3.2</RegistryNumber>
<NameOfSubstance UI="D014534">UDPglucose 4-Epimerase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>X2RN3Q8DNE</RegistryNumber>
<NameOfSubstance UI="D005690">Galactose</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D017360" MajorTopicYN="N">Arabidopsis</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029681" MajorTopicYN="N">Arabidopsis Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D056804" MajorTopicYN="N">Biofuels</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="N">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001947" MajorTopicYN="N">Breeding</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002473" MajorTopicYN="N">Cell Wall</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005685" MajorTopicYN="N">Galactans</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005690" MajorTopicYN="N">Galactose</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="Y">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030821" MajorTopicYN="N">Plants, Genetically Modified</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011401" MajorTopicYN="N">Promoter Regions, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014534" MajorTopicYN="N">UDPglucose 4-Epimerase</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2014</Year>
<Month>09</Month>
<Day>10</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2014</Year>
<Month>11</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>12</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>12</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>11</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25492673</ArticleId>
<ArticleId IdType="pii">s12870-014-0344-x</ArticleId>
<ArticleId IdType="doi">10.1186/s12870-014-0344-x</ArticleId>
<ArticleId IdType="pmc">PMC4268804</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant Physiol. 2006 Jan;140(1):49-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16377743</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2008;178(2):239-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18298430</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2011 Nov;4(6):1024-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21471331</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Apr;140(4):1406-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16500990</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1998 Dec;16(6):735-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10069079</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Jun 23;281(25):17276-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16644739</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 May;19(5):1565-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17496119</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2011 Apr;23(4):1373-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21478444</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 Jan;19(1):270-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17237351</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2013 Dec;30(12):2725-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24132122</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2012 Jun;10(5):609-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22458713</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2012 Dec;24(12):5024-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23243126</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2006 Feb 15;394(Pt 1):115-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16266295</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2004 May;65(10):1429-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15231417</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Biofuels. 2012 Nov 26;5(1):84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23181474</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2003 Feb;15(2):523-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12566589</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1999 Feb;17(4):453-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10205902</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2011 Nov 18;286(46):39982-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21949134</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2011;62:127-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21370975</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2009 Aug;59(3):413-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19392693</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2009 Dec 1;424(2):169-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19754426</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2002 Oct;215(6):949-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12355155</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2013 Apr;11(3):325-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23140549</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2014 Aug 5;111(31):11563-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25053812</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 2008;77:521-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18518825</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1997 Apr;113(4):1405-1412</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12223681</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2002 Oct 29;12(21):1840-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12419184</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list></list>
<tree>
<noCountry>
<name sortKey="Ebert, Berit" sort="Ebert, Berit" uniqKey="Ebert B" first="Berit" last="Ebert">Berit Ebert</name>
<name sortKey="Gondolf, Vibe M" sort="Gondolf, Vibe M" uniqKey="Gondolf V" first="Vibe M" last="Gondolf">Vibe M. Gondolf</name>
<name sortKey="Liwanag, April Jm" sort="Liwanag, April Jm" uniqKey="Liwanag A" first="April Jm" last="Liwanag">April Jm Liwanag</name>
<name sortKey="Loque, Dominique" sort="Loque, Dominique" uniqKey="Loque D" first="Dominique" last="Loqué">Dominique Loqué</name>
<name sortKey="Rautengarten, Carsten" sort="Rautengarten, Carsten" uniqKey="Rautengarten C" first="Carsten" last="Rautengarten">Carsten Rautengarten</name>
<name sortKey="Scheller, Henrik V" sort="Scheller, Henrik V" uniqKey="Scheller H" first="Henrik V" last="Scheller">Henrik V. Scheller</name>
<name sortKey="Stoppel, Rhea" sort="Stoppel, Rhea" uniqKey="Stoppel R" first="Rhea" last="Stoppel">Rhea Stoppel</name>
</noCountry>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002400 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002400 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:25492673
   |texte=   A gene stacking approach leads to engineered plants with highly increased galactan levels in Arabidopsis.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:25492673" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020