Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Evaluation of experimental design and computational parameter choices affecting analyses of ChIP-seq and RNA-seq data in undomesticated poplar trees.

Identifieur interne : 002242 ( Main/Exploration ); précédent : 002241; suivant : 002243

Evaluation of experimental design and computational parameter choices affecting analyses of ChIP-seq and RNA-seq data in undomesticated poplar trees.

Auteurs : Lijun Liu ; Victor Missirian ; Matthew Zinkgraf ; Andrew Groover ; Vladimir Filkov

Source :

RBID : pubmed:25081589

Descripteurs français

English descriptors

Abstract

BACKGROUND

One of the great advantages of next generation sequencing is the ability to generate large genomic datasets for virtually all species, including non-model organisms. It should be possible, in turn, to apply advanced computational approaches to these datasets to develop models of biological processes. In a practical sense, working with non-model organisms presents unique challenges. In this paper we discuss some of these challenges for ChIP-seq and RNA-seq experiments using the undomesticated tree species of the genus Populus.

RESULTS

We describe specific challenges associated with experimental design in Populus, including selection of optimal genotypes for different technical approaches and development of antibodies against Populus transcription factors. Execution of the experimental design included the generation and analysis of Chromatin immunoprecipitation-sequencing (ChIP-seq) data for RNA polymerase II and transcription factors involved in wood formation. We discuss criteria for analyzing the resulting datasets, determination of appropriate control sequencing libraries, evaluation of sequencing coverage needs, and optimization of parameters. We also describe the evaluation of ChIP-seq data from Populus, and discuss the comparison between ChIP-seq and RNA-seq data and biological interpretations of these comparisons.

CONCLUSIONS

These and other "lessons learned" highlight the challenges but also the potential insights to be gained from extending next generation sequencing-supported network analyses to undomesticated non-model species.


DOI: 10.1186/1471-2164-15-S5-S3
PubMed: 25081589
PubMed Central: PMC4120141


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Evaluation of experimental design and computational parameter choices affecting analyses of ChIP-seq and RNA-seq data in undomesticated poplar trees.</title>
<author>
<name sortKey="Liu, Lijun" sort="Liu, Lijun" uniqKey="Liu L" first="Lijun" last="Liu">Lijun Liu</name>
</author>
<author>
<name sortKey="Missirian, Victor" sort="Missirian, Victor" uniqKey="Missirian V" first="Victor" last="Missirian">Victor Missirian</name>
</author>
<author>
<name sortKey="Zinkgraf, Matthew" sort="Zinkgraf, Matthew" uniqKey="Zinkgraf M" first="Matthew" last="Zinkgraf">Matthew Zinkgraf</name>
</author>
<author>
<name sortKey="Groover, Andrew" sort="Groover, Andrew" uniqKey="Groover A" first="Andrew" last="Groover">Andrew Groover</name>
</author>
<author>
<name sortKey="Filkov, Vladimir" sort="Filkov, Vladimir" uniqKey="Filkov V" first="Vladimir" last="Filkov">Vladimir Filkov</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:25081589</idno>
<idno type="pmid">25081589</idno>
<idno type="doi">10.1186/1471-2164-15-S5-S3</idno>
<idno type="pmc">PMC4120141</idno>
<idno type="wicri:Area/Main/Corpus">002058</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002058</idno>
<idno type="wicri:Area/Main/Curation">002058</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002058</idno>
<idno type="wicri:Area/Main/Exploration">002058</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Evaluation of experimental design and computational parameter choices affecting analyses of ChIP-seq and RNA-seq data in undomesticated poplar trees.</title>
<author>
<name sortKey="Liu, Lijun" sort="Liu, Lijun" uniqKey="Liu L" first="Lijun" last="Liu">Lijun Liu</name>
</author>
<author>
<name sortKey="Missirian, Victor" sort="Missirian, Victor" uniqKey="Missirian V" first="Victor" last="Missirian">Victor Missirian</name>
</author>
<author>
<name sortKey="Zinkgraf, Matthew" sort="Zinkgraf, Matthew" uniqKey="Zinkgraf M" first="Matthew" last="Zinkgraf">Matthew Zinkgraf</name>
</author>
<author>
<name sortKey="Groover, Andrew" sort="Groover, Andrew" uniqKey="Groover A" first="Andrew" last="Groover">Andrew Groover</name>
</author>
<author>
<name sortKey="Filkov, Vladimir" sort="Filkov, Vladimir" uniqKey="Filkov V" first="Vladimir" last="Filkov">Vladimir Filkov</name>
</author>
</analytic>
<series>
<title level="j">BMC genomics</title>
<idno type="eISSN">1471-2164</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Chromatin Immunoprecipitation (MeSH)</term>
<term>Chromosome Mapping (MeSH)</term>
<term>Computational Biology (MeSH)</term>
<term>Gene Library (MeSH)</term>
<term>High-Throughput Nucleotide Sequencing (MeSH)</term>
<term>Populus (genetics)</term>
<term>RNA Polymerase II (genetics)</term>
<term>RNA, Plant (genetics)</term>
<term>Research Design (MeSH)</term>
<term>Sequence Analysis, RNA (MeSH)</term>
<term>Transcription Factors (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ARN des plantes (génétique)</term>
<term>Analyse de séquence d'ARN (MeSH)</term>
<term>Banque de gènes (MeSH)</term>
<term>Biologie informatique (MeSH)</term>
<term>Cartographie chromosomique (MeSH)</term>
<term>Facteurs de transcription (génétique)</term>
<term>Immunoprécipitation de la chromatine (MeSH)</term>
<term>Plan de recherche (MeSH)</term>
<term>Populus (génétique)</term>
<term>RNA polymerase II (génétique)</term>
<term>Séquençage nucléotidique à haut débit (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>RNA Polymerase II</term>
<term>RNA, Plant</term>
<term>Transcription Factors</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>ARN des plantes</term>
<term>Facteurs de transcription</term>
<term>Populus</term>
<term>RNA polymerase II</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Chromatin Immunoprecipitation</term>
<term>Chromosome Mapping</term>
<term>Computational Biology</term>
<term>Gene Library</term>
<term>High-Throughput Nucleotide Sequencing</term>
<term>Research Design</term>
<term>Sequence Analysis, RNA</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Analyse de séquence d'ARN</term>
<term>Banque de gènes</term>
<term>Biologie informatique</term>
<term>Cartographie chromosomique</term>
<term>Immunoprécipitation de la chromatine</term>
<term>Plan de recherche</term>
<term>Séquençage nucléotidique à haut débit</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>One of the great advantages of next generation sequencing is the ability to generate large genomic datasets for virtually all species, including non-model organisms. It should be possible, in turn, to apply advanced computational approaches to these datasets to develop models of biological processes. In a practical sense, working with non-model organisms presents unique challenges. In this paper we discuss some of these challenges for ChIP-seq and RNA-seq experiments using the undomesticated tree species of the genus Populus.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>We describe specific challenges associated with experimental design in Populus, including selection of optimal genotypes for different technical approaches and development of antibodies against Populus transcription factors. Execution of the experimental design included the generation and analysis of Chromatin immunoprecipitation-sequencing (ChIP-seq) data for RNA polymerase II and transcription factors involved in wood formation. We discuss criteria for analyzing the resulting datasets, determination of appropriate control sequencing libraries, evaluation of sequencing coverage needs, and optimization of parameters. We also describe the evaluation of ChIP-seq data from Populus, and discuss the comparison between ChIP-seq and RNA-seq data and biological interpretations of these comparisons.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>These and other "lessons learned" highlight the challenges but also the potential insights to be gained from extending next generation sequencing-supported network analyses to undomesticated non-model species.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">25081589</PMID>
<DateCompleted>
<Year>2014</Year>
<Month>11</Month>
<Day>21</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1471-2164</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>15 Suppl 5</Volume>
<PubDate>
<Year>2014</Year>
</PubDate>
</JournalIssue>
<Title>BMC genomics</Title>
<ISOAbbreviation>BMC Genomics</ISOAbbreviation>
</Journal>
<ArticleTitle>Evaluation of experimental design and computational parameter choices affecting analyses of ChIP-seq and RNA-seq data in undomesticated poplar trees.</ArticleTitle>
<Pagination>
<MedlinePgn>S3</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/1471-2164-15-S5-S3</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">One of the great advantages of next generation sequencing is the ability to generate large genomic datasets for virtually all species, including non-model organisms. It should be possible, in turn, to apply advanced computational approaches to these datasets to develop models of biological processes. In a practical sense, working with non-model organisms presents unique challenges. In this paper we discuss some of these challenges for ChIP-seq and RNA-seq experiments using the undomesticated tree species of the genus Populus.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">We describe specific challenges associated with experimental design in Populus, including selection of optimal genotypes for different technical approaches and development of antibodies against Populus transcription factors. Execution of the experimental design included the generation and analysis of Chromatin immunoprecipitation-sequencing (ChIP-seq) data for RNA polymerase II and transcription factors involved in wood formation. We discuss criteria for analyzing the resulting datasets, determination of appropriate control sequencing libraries, evaluation of sequencing coverage needs, and optimization of parameters. We also describe the evaluation of ChIP-seq data from Populus, and discuss the comparison between ChIP-seq and RNA-seq data and biological interpretations of these comparisons.</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">These and other "lessons learned" highlight the challenges but also the potential insights to be gained from extending next generation sequencing-supported network analyses to undomesticated non-model species.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Liu</LastName>
<ForeName>Lijun</ForeName>
<Initials>L</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Missirian</LastName>
<ForeName>Victor</ForeName>
<Initials>V</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zinkgraf</LastName>
<ForeName>Matthew</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Groover</LastName>
<ForeName>Andrew</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Filkov</LastName>
<ForeName>Vladimir</ForeName>
<Initials>V</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>07</Month>
<Day>14</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>BMC Genomics</MedlineTA>
<NlmUniqueID>100965258</NlmUniqueID>
<ISSNLinking>1471-2164</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018749">RNA, Plant</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014157">Transcription Factors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.7.-</RegistryNumber>
<NameOfSubstance UI="D012319">RNA Polymerase II</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D047369" MajorTopicYN="Y">Chromatin Immunoprecipitation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002874" MajorTopicYN="N">Chromosome Mapping</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019295" MajorTopicYN="N">Computational Biology</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015723" MajorTopicYN="N">Gene Library</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059014" MajorTopicYN="N">High-Throughput Nucleotide Sequencing</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012319" MajorTopicYN="N">RNA Polymerase II</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018749" MajorTopicYN="N">RNA, Plant</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012107" MajorTopicYN="Y">Research Design</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017423" MajorTopicYN="Y">Sequence Analysis, RNA</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014157" MajorTopicYN="N">Transcription Factors</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>8</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>8</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>12</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25081589</ArticleId>
<ArticleId IdType="pii">1471-2164-15-S5-S3</ArticleId>
<ArticleId IdType="doi">10.1186/1471-2164-15-S5-S3</ArticleId>
<ArticleId IdType="pmc">PMC4120141</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>BMC Plant Biol. 2011;11:13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21232107</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Signal. 2013 Aug;25(8):1699-710</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23602935</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2004 Sep;16(9):2278-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15316113</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2006 Aug;61(6):917-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16927204</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Sep 15;313(5793):1596-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16973872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2007;58:435-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17280524</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2007 Jun;12(6):234-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17499008</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Genet. 2008 Jul;24(7):353-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18514356</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2008;9(9):R137</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18798982</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2009;4(8):e6700</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19693276</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2009 Sep;37(17):e113</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19553195</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2009 Dec;60(6):1000-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19737362</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2010 Jan 1;26(1):139-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19910308</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Development. 2010 Mar;137(6):975-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20179097</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2011 Feb;14(1):88-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21075046</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Mar;155(3):1214-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21205615</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011;6(2):e17458</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21386988</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Protoc Bioinformatics. 2011 Jun;Chapter 2:Unit 2.14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21633945</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2011 Dec 9;147(6):1408-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22153082</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2012 Apr;9(4):357-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22388286</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2012 Aug 1;26(15):1685-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22855831</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2012 Jun;9(6):609-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22522655</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2012 Sep;7(9):1728-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22936215</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2012 Sep;22(9):1658-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22955978</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2012 Sep;22(9):1813-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22955991</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2012 Oct;24(10):3949-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23110901</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2013;9(1):e1003244</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23382695</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Brief Bioinform. 2013 Mar;14(2):178-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22517427</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2013 Apr;33(4):357-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23100257</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2013;14:477</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23865409</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list></list>
<tree>
<noCountry>
<name sortKey="Filkov, Vladimir" sort="Filkov, Vladimir" uniqKey="Filkov V" first="Vladimir" last="Filkov">Vladimir Filkov</name>
<name sortKey="Groover, Andrew" sort="Groover, Andrew" uniqKey="Groover A" first="Andrew" last="Groover">Andrew Groover</name>
<name sortKey="Liu, Lijun" sort="Liu, Lijun" uniqKey="Liu L" first="Lijun" last="Liu">Lijun Liu</name>
<name sortKey="Missirian, Victor" sort="Missirian, Victor" uniqKey="Missirian V" first="Victor" last="Missirian">Victor Missirian</name>
<name sortKey="Zinkgraf, Matthew" sort="Zinkgraf, Matthew" uniqKey="Zinkgraf M" first="Matthew" last="Zinkgraf">Matthew Zinkgraf</name>
</noCountry>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002242 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002242 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:25081589
   |texte=   Evaluation of experimental design and computational parameter choices affecting analyses of ChIP-seq and RNA-seq data in undomesticated poplar trees.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:25081589" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020