Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Stress-responsive hydroxycinnamate glycosyltransferase modulates phenylpropanoid metabolism in Populus.

Identifieur interne : 002039 ( Main/Exploration ); précédent : 002038; suivant : 002040

Stress-responsive hydroxycinnamate glycosyltransferase modulates phenylpropanoid metabolism in Populus.

Auteurs : Benjamin A. Babst [États-Unis] ; Han-Yi Chen [États-Unis] ; Hong-Qiang Wang [États-Unis] ; Raja S. Payyavula [États-Unis] ; Tina P. Thomas [États-Unis] ; Scott A. Harding [États-Unis] ; Chung-Jui Tsai [États-Unis]

Source :

RBID : pubmed:24803501

Descripteurs français

English descriptors

Abstract

The diversity of phenylpropanoids offers a rich inventory of bioactive chemicals that can be exploited for plant improvement and human health. Recent evidence suggests that glycosylation may play a role in the partitioning of phenylpropanoid precursors for a variety of downstream uses. This work reports the functional characterization of a stress-responsive glycosyltransferase, GT1-316 in Populus. GT1-316 belongs to the UGT84A subfamily of plant glycosyltransferase family 1 and is designated UGT84A17. Recombinant protein analysis showed that UGT84A17 is a hydroxycinnamate glycosyltransferase and able to accept a range of unsubstituted and substituted cinnamic and benzoic acids as substrates in vitro. Overexpression of GT1-316 in transgenic Populus led to plant-wide increases of hydroxycinnamoyl-glucose esters, which were further elevated under N-limiting conditions. Levels of the two most abundant flavonoid glycosides, rutin and kaempferol-3-O-rutinoside, decreased, while levels of other less abundant flavonoid and phenylpropanoid conjugates increased in leaves of the GT1-316-overexpressing plants. Transcript levels of representative phenylpropanoid pathway genes were unchanged in transgenic plants, supporting a glycosylation-mediated redirection of phenylpropanoid carbon flow as opposed to enhanced phenylpropanoid pathway flux. The metabolic response of N-replete transgenic plants overlapped with that of N-stressed wild types, as the majority of phenylpropanoid derivatives significantly affected by GT1-316 overexpression were also significantly changed by N stress in the wild types. These results suggest that UGT84A17 plays an important role in phenylpropanoid metabolism by modulating biosynthesis of hydroxycinnamoyl-glucose esters and their derivatives in response to developmental and environmental cues.

DOI: 10.1093/jxb/eru192
PubMed: 24803501
PubMed Central: PMC4112628


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Stress-responsive hydroxycinnamate glycosyltransferase modulates phenylpropanoid metabolism in Populus.</title>
<author>
<name sortKey="Babst, Benjamin A" sort="Babst, Benjamin A" uniqKey="Babst B" first="Benjamin A" last="Babst">Benjamin A. Babst</name>
<affiliation wicri:level="2">
<nlm:affiliation>Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA Department of Genetics, University of Georgia, Athens, GA 30602, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA Department of Genetics, University of Georgia, Athens, GA 30602</wicri:regionArea>
<placeName>
<region type="state">Géorgie (États-Unis)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Chen, Han Yi" sort="Chen, Han Yi" uniqKey="Chen H" first="Han-Yi" last="Chen">Han-Yi Chen</name>
<affiliation wicri:level="2">
<nlm:affiliation>Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602</wicri:regionArea>
<placeName>
<region type="state">Géorgie (États-Unis)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Wang, Hong Qiang" sort="Wang, Hong Qiang" uniqKey="Wang H" first="Hong-Qiang" last="Wang">Hong-Qiang Wang</name>
<affiliation wicri:level="2">
<nlm:affiliation>Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA Department of Genetics, University of Georgia, Athens, GA 30602, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA Department of Genetics, University of Georgia, Athens, GA 30602</wicri:regionArea>
<placeName>
<region type="state">Géorgie (États-Unis)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Payyavula, Raja S" sort="Payyavula, Raja S" uniqKey="Payyavula R" first="Raja S" last="Payyavula">Raja S. Payyavula</name>
<affiliation wicri:level="2">
<nlm:affiliation>Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602</wicri:regionArea>
<placeName>
<region type="state">Géorgie (États-Unis)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Thomas, Tina P" sort="Thomas, Tina P" uniqKey="Thomas T" first="Tina P" last="Thomas">Tina P. Thomas</name>
<affiliation wicri:level="2">
<nlm:affiliation>Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602</wicri:regionArea>
<placeName>
<region type="state">Géorgie (États-Unis)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Harding, Scott A" sort="Harding, Scott A" uniqKey="Harding S" first="Scott A" last="Harding">Scott A. Harding</name>
<affiliation wicri:level="2">
<nlm:affiliation>Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA Department of Genetics, University of Georgia, Athens, GA 30602, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA Department of Genetics, University of Georgia, Athens, GA 30602</wicri:regionArea>
<placeName>
<region type="state">Géorgie (États-Unis)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Tsai, Chung Jui" sort="Tsai, Chung Jui" uniqKey="Tsai C" first="Chung-Jui" last="Tsai">Chung-Jui Tsai</name>
<affiliation wicri:level="2">
<nlm:affiliation>Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA Department of Genetics, University of Georgia, Athens, GA 30602, USA cjtsai@uga.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA Department of Genetics, University of Georgia, Athens, GA 30602</wicri:regionArea>
<placeName>
<region type="state">Géorgie (États-Unis)</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:24803501</idno>
<idno type="pmid">24803501</idno>
<idno type="doi">10.1093/jxb/eru192</idno>
<idno type="pmc">PMC4112628</idno>
<idno type="wicri:Area/Main/Corpus">002197</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002197</idno>
<idno type="wicri:Area/Main/Curation">002197</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002197</idno>
<idno type="wicri:Area/Main/Exploration">002197</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Stress-responsive hydroxycinnamate glycosyltransferase modulates phenylpropanoid metabolism in Populus.</title>
<author>
<name sortKey="Babst, Benjamin A" sort="Babst, Benjamin A" uniqKey="Babst B" first="Benjamin A" last="Babst">Benjamin A. Babst</name>
<affiliation wicri:level="2">
<nlm:affiliation>Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA Department of Genetics, University of Georgia, Athens, GA 30602, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA Department of Genetics, University of Georgia, Athens, GA 30602</wicri:regionArea>
<placeName>
<region type="state">Géorgie (États-Unis)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Chen, Han Yi" sort="Chen, Han Yi" uniqKey="Chen H" first="Han-Yi" last="Chen">Han-Yi Chen</name>
<affiliation wicri:level="2">
<nlm:affiliation>Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602</wicri:regionArea>
<placeName>
<region type="state">Géorgie (États-Unis)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Wang, Hong Qiang" sort="Wang, Hong Qiang" uniqKey="Wang H" first="Hong-Qiang" last="Wang">Hong-Qiang Wang</name>
<affiliation wicri:level="2">
<nlm:affiliation>Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA Department of Genetics, University of Georgia, Athens, GA 30602, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA Department of Genetics, University of Georgia, Athens, GA 30602</wicri:regionArea>
<placeName>
<region type="state">Géorgie (États-Unis)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Payyavula, Raja S" sort="Payyavula, Raja S" uniqKey="Payyavula R" first="Raja S" last="Payyavula">Raja S. Payyavula</name>
<affiliation wicri:level="2">
<nlm:affiliation>Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602</wicri:regionArea>
<placeName>
<region type="state">Géorgie (États-Unis)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Thomas, Tina P" sort="Thomas, Tina P" uniqKey="Thomas T" first="Tina P" last="Thomas">Tina P. Thomas</name>
<affiliation wicri:level="2">
<nlm:affiliation>Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602</wicri:regionArea>
<placeName>
<region type="state">Géorgie (États-Unis)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Harding, Scott A" sort="Harding, Scott A" uniqKey="Harding S" first="Scott A" last="Harding">Scott A. Harding</name>
<affiliation wicri:level="2">
<nlm:affiliation>Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA Department of Genetics, University of Georgia, Athens, GA 30602, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA Department of Genetics, University of Georgia, Athens, GA 30602</wicri:regionArea>
<placeName>
<region type="state">Géorgie (États-Unis)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Tsai, Chung Jui" sort="Tsai, Chung Jui" uniqKey="Tsai C" first="Chung-Jui" last="Tsai">Chung-Jui Tsai</name>
<affiliation wicri:level="2">
<nlm:affiliation>Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA Department of Genetics, University of Georgia, Athens, GA 30602, USA cjtsai@uga.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA Department of Genetics, University of Georgia, Athens, GA 30602</wicri:regionArea>
<placeName>
<region type="state">Géorgie (États-Unis)</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of experimental botany</title>
<idno type="eISSN">1460-2431</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Coumaric Acids (metabolism)</term>
<term>Glycosyltransferases (metabolism)</term>
<term>Hydroxybenzoates (metabolism)</term>
<term>Multigene Family (MeSH)</term>
<term>Phylogeny (MeSH)</term>
<term>Plant Proteins (genetics)</term>
<term>Plant Proteins (metabolism)</term>
<term>Plants, Genetically Modified (MeSH)</term>
<term>Populus (enzymology)</term>
<term>Populus (genetics)</term>
<term>Stress, Physiological (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Acides coumariques (métabolisme)</term>
<term>Famille multigénique (MeSH)</term>
<term>Glycosyltransferase (métabolisme)</term>
<term>Hydroxybenzoates (métabolisme)</term>
<term>Phylogenèse (MeSH)</term>
<term>Populus (enzymologie)</term>
<term>Populus (génétique)</term>
<term>Protéines végétales (génétique)</term>
<term>Protéines végétales (métabolisme)</term>
<term>Stress physiologique (MeSH)</term>
<term>Végétaux génétiquement modifiés (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Coumaric Acids</term>
<term>Glycosyltransferases</term>
<term>Hydroxybenzoates</term>
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Populus</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Acides coumariques</term>
<term>Glycosyltransferase</term>
<term>Hydroxybenzoates</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Multigene Family</term>
<term>Phylogeny</term>
<term>Plants, Genetically Modified</term>
<term>Stress, Physiological</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Famille multigénique</term>
<term>Phylogenèse</term>
<term>Stress physiologique</term>
<term>Végétaux génétiquement modifiés</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The diversity of phenylpropanoids offers a rich inventory of bioactive chemicals that can be exploited for plant improvement and human health. Recent evidence suggests that glycosylation may play a role in the partitioning of phenylpropanoid precursors for a variety of downstream uses. This work reports the functional characterization of a stress-responsive glycosyltransferase, GT1-316 in Populus. GT1-316 belongs to the UGT84A subfamily of plant glycosyltransferase family 1 and is designated UGT84A17. Recombinant protein analysis showed that UGT84A17 is a hydroxycinnamate glycosyltransferase and able to accept a range of unsubstituted and substituted cinnamic and benzoic acids as substrates in vitro. Overexpression of GT1-316 in transgenic Populus led to plant-wide increases of hydroxycinnamoyl-glucose esters, which were further elevated under N-limiting conditions. Levels of the two most abundant flavonoid glycosides, rutin and kaempferol-3-O-rutinoside, decreased, while levels of other less abundant flavonoid and phenylpropanoid conjugates increased in leaves of the GT1-316-overexpressing plants. Transcript levels of representative phenylpropanoid pathway genes were unchanged in transgenic plants, supporting a glycosylation-mediated redirection of phenylpropanoid carbon flow as opposed to enhanced phenylpropanoid pathway flux. The metabolic response of N-replete transgenic plants overlapped with that of N-stressed wild types, as the majority of phenylpropanoid derivatives significantly affected by GT1-316 overexpression were also significantly changed by N stress in the wild types. These results suggest that UGT84A17 plays an important role in phenylpropanoid metabolism by modulating biosynthesis of hydroxycinnamoyl-glucose esters and their derivatives in response to developmental and environmental cues. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">24803501</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>04</Month>
<Day>01</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1460-2431</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>65</Volume>
<Issue>15</Issue>
<PubDate>
<Year>2014</Year>
<Month>Aug</Month>
</PubDate>
</JournalIssue>
<Title>Journal of experimental botany</Title>
<ISOAbbreviation>J Exp Bot</ISOAbbreviation>
</Journal>
<ArticleTitle>Stress-responsive hydroxycinnamate glycosyltransferase modulates phenylpropanoid metabolism in Populus.</ArticleTitle>
<Pagination>
<MedlinePgn>4191-200</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1093/jxb/eru192</ELocationID>
<Abstract>
<AbstractText>The diversity of phenylpropanoids offers a rich inventory of bioactive chemicals that can be exploited for plant improvement and human health. Recent evidence suggests that glycosylation may play a role in the partitioning of phenylpropanoid precursors for a variety of downstream uses. This work reports the functional characterization of a stress-responsive glycosyltransferase, GT1-316 in Populus. GT1-316 belongs to the UGT84A subfamily of plant glycosyltransferase family 1 and is designated UGT84A17. Recombinant protein analysis showed that UGT84A17 is a hydroxycinnamate glycosyltransferase and able to accept a range of unsubstituted and substituted cinnamic and benzoic acids as substrates in vitro. Overexpression of GT1-316 in transgenic Populus led to plant-wide increases of hydroxycinnamoyl-glucose esters, which were further elevated under N-limiting conditions. Levels of the two most abundant flavonoid glycosides, rutin and kaempferol-3-O-rutinoside, decreased, while levels of other less abundant flavonoid and phenylpropanoid conjugates increased in leaves of the GT1-316-overexpressing plants. Transcript levels of representative phenylpropanoid pathway genes were unchanged in transgenic plants, supporting a glycosylation-mediated redirection of phenylpropanoid carbon flow as opposed to enhanced phenylpropanoid pathway flux. The metabolic response of N-replete transgenic plants overlapped with that of N-stressed wild types, as the majority of phenylpropanoid derivatives significantly affected by GT1-316 overexpression were also significantly changed by N stress in the wild types. These results suggest that UGT84A17 plays an important role in phenylpropanoid metabolism by modulating biosynthesis of hydroxycinnamoyl-glucose esters and their derivatives in response to developmental and environmental cues. </AbstractText>
<CopyrightInformation>© The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Babst</LastName>
<ForeName>Benjamin A</ForeName>
<Initials>BA</Initials>
<AffiliationInfo>
<Affiliation>Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA Department of Genetics, University of Georgia, Athens, GA 30602, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>Han-Yi</ForeName>
<Initials>HY</Initials>
<AffiliationInfo>
<Affiliation>Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Hong-Qiang</ForeName>
<Initials>HQ</Initials>
<AffiliationInfo>
<Affiliation>Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA Department of Genetics, University of Georgia, Athens, GA 30602, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Payyavula</LastName>
<ForeName>Raja S</ForeName>
<Initials>RS</Initials>
<AffiliationInfo>
<Affiliation>Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Thomas</LastName>
<ForeName>Tina P</ForeName>
<Initials>TP</Initials>
<AffiliationInfo>
<Affiliation>Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Harding</LastName>
<ForeName>Scott A</ForeName>
<Initials>SA</Initials>
<AffiliationInfo>
<Affiliation>Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA Department of Genetics, University of Georgia, Athens, GA 30602, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tsai</LastName>
<ForeName>Chung-Jui</ForeName>
<Initials>CJ</Initials>
<AffiliationInfo>
<Affiliation>Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA Department of Genetics, University of Georgia, Athens, GA 30602, USA cjtsai@uga.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>05</Month>
<Day>06</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>J Exp Bot</MedlineTA>
<NlmUniqueID>9882906</NlmUniqueID>
<ISSNLinking>0022-0957</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D003373">Coumaric Acids</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D062385">Hydroxybenzoates</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.4.-</RegistryNumber>
<NameOfSubstance UI="D016695">Glycosyltransferases</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D003373" MajorTopicYN="N">Coumaric Acids</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016695" MajorTopicYN="N">Glycosyltransferases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D062385" MajorTopicYN="N">Hydroxybenzoates</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005810" MajorTopicYN="N">Multigene Family</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="N">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030821" MajorTopicYN="N">Plants, Genetically Modified</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013312" MajorTopicYN="Y">Stress, Physiological</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Glycosylation</Keyword>
<Keyword MajorTopicYN="N">Populus</Keyword>
<Keyword MajorTopicYN="N">UGT84A.</Keyword>
<Keyword MajorTopicYN="N">hydroxycinnamate glucose ester</Keyword>
<Keyword MajorTopicYN="N">metabolite profiling</Keyword>
<Keyword MajorTopicYN="N">phenylpropanoid</Keyword>
<Keyword MajorTopicYN="N">stress</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>5</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>5</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>4</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24803501</ArticleId>
<ArticleId IdType="pii">eru192</ArticleId>
<ArticleId IdType="doi">10.1093/jxb/eru192</ArticleId>
<ArticleId IdType="pmc">PMC4112628</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>New Phytol. 2006;172(1):47-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16945088</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2012 Feb;53(2):e1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22123792</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2007 Feb;49(4):655-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17217457</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2004 Aug;219(4):694-704</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15146331</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2012 Jan;69(1):154-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21899608</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Mar;140(3):946-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16415215</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2013 Apr;161(4):1656-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23424250</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2000 Nov;211(6):883-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11144274</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2009;9:151</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20040108</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochem Anal. 2005 Nov-Dec;16(6):470-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16315493</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2010 Jan;3(1):2-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20035037</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2000 Dec 8;486(2):183-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11187886</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2013 Jul;25(7):2714-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23903318</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2006;57:567-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16669774</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2000 Sep;5(9):380-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10973093</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1995 Dec;109(4):1159-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8539286</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2011 Oct;28(10):2731-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21546353</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Nat Prod. 2005 Apr;68(4):517-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15844940</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2003;54:519-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14503002</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2000 Aug;12(8):1295-306</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10948250</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Agric Food Chem. 2008 Jun 25;56(12):4797-805</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18494493</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chromatogr B Analyt Technol Biomed Life Sci. 2008 Aug 1;871(1):115-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18650133</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2001 Nov;127(3):863-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11706169</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Feb 9;276(6):4338-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11042215</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2011 Mar;65(5):757-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21261761</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1965 Aug 7;207(997):634-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5883642</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2012 Oct;38(10):1235-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23053919</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Prod Rep. 2009 Jul;26(7):884-915</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19554240</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Feb 9;276(6):4350-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11042207</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2011;12:236</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21569431</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2006 Jun;9(3):331-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16616872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Feb 9;276(6):4344-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11042211</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Sep 15;313(5793):1596-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16973872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Aug;141(4):1205-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16896233</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 1992 Mar;186(4):582-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24186789</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2005 Dec;25(12):1475-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16137933</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2011 Jan 15;27(2):225-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21098430</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Mar;155(3):1127-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21248075</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol J. 2007 Oct;2(10):1214-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17935117</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Mar;140(3):1047-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16443693</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2008 Sep;228(4):663-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18563436</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2005 Jun;8(3):329-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15860431</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2003 Jan 17;299(5605):396-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12532018</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 2001;335:70-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11400392</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2003 Aug 1;373(Pt 3):987-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12741958</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2007 Jan;225(2):515-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16909288</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Dec 22;106(51):22020-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19996170</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2010 Jul;71(10):1076-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20451226</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2008 Sep;228(4):609-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18563437</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2008 Apr;146(4):1528-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18258692</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2008 Dec;229(1):15-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18820945</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2009;581:169-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19768623</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2005 May;37(5):501-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15806101</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Géorgie (États-Unis)</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Géorgie (États-Unis)">
<name sortKey="Babst, Benjamin A" sort="Babst, Benjamin A" uniqKey="Babst B" first="Benjamin A" last="Babst">Benjamin A. Babst</name>
</region>
<name sortKey="Chen, Han Yi" sort="Chen, Han Yi" uniqKey="Chen H" first="Han-Yi" last="Chen">Han-Yi Chen</name>
<name sortKey="Harding, Scott A" sort="Harding, Scott A" uniqKey="Harding S" first="Scott A" last="Harding">Scott A. Harding</name>
<name sortKey="Payyavula, Raja S" sort="Payyavula, Raja S" uniqKey="Payyavula R" first="Raja S" last="Payyavula">Raja S. Payyavula</name>
<name sortKey="Thomas, Tina P" sort="Thomas, Tina P" uniqKey="Thomas T" first="Tina P" last="Thomas">Tina P. Thomas</name>
<name sortKey="Tsai, Chung Jui" sort="Tsai, Chung Jui" uniqKey="Tsai C" first="Chung-Jui" last="Tsai">Chung-Jui Tsai</name>
<name sortKey="Wang, Hong Qiang" sort="Wang, Hong Qiang" uniqKey="Wang H" first="Hong-Qiang" last="Wang">Hong-Qiang Wang</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002039 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002039 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:24803501
   |texte=   Stress-responsive hydroxycinnamate glycosyltransferase modulates phenylpropanoid metabolism in Populus.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:24803501" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020