Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Transcriptome sequencing of transgenic poplar (Populus × euramericana 'Guariento') expressing multiple resistance genes.

Identifieur interne : 001F90 ( Main/Exploration ); précédent : 001F89; suivant : 001F91

Transcriptome sequencing of transgenic poplar (Populus × euramericana 'Guariento') expressing multiple resistance genes.

Auteurs : Weixi Zhang ; Yanguang Chu ; Changjun Ding ; Bingyu Zhang ; Qinjun Huang ; Zanmin Hu ; Rongfeng Huang ; Yingchuan Tian ; Xiaohua Su

Source :

RBID : pubmed:25079970

Descripteurs français

English descriptors

Abstract

BACKGROUND

Transgenic poplar (Populus × euramericana 'Guariento') plants harboring five exogenous, stress-related genes exhibit increased tolerance to multiple stresses including drought, salt, waterlogging, and insect feeding, but the complex mechanisms underlying stress tolerance in these plants have not been elucidated. Here, we analyzed the differences in the transcriptomes of the transgenic poplar line D5-20 and the non-transgenic line D5-0 using high-throughput transcriptome sequencing techniques and elucidated the functions of the differentially expressed genes using various functional annotation methods.

RESULTS

We generated 11.80 Gb of sequencing data containing 63, 430, 901 sequences, with an average length of 200 bp. The processed sequences were mapped to reference genome sequences of Populus trichocarpa. An average of 62.30% and 61.48% sequences could be aligned with the reference genomes for D5-20 and D5-0, respectively. We detected 11,352 (D5-20) and 11,372 expressed genes (D5-0), 7,624 (56.61%; D5-20) and 7,453 (65.54%; D5-0) of which could be functionally annotated. A total of 782 differentially expressed genes in D5-20 were identified compared with D5-0, including 628 up-regulated and 154 down-regulated genes. In addition, 196 genes with putative functions related to stress responses were also annotated. Gene Ontology (GO) analysis revealed that 346 differentially expressed genes are mainly involved in 67 biological functions, such as DNA binding and nucleus. KEGG annotation revealed that 36 genes (21 up-regulated and 15 down-regulated) were enriched in 51 biological pathways, 9 of which are linked to glucose metabolism. KOG functional classification revealed that 475 genes were enriched in 23 types of KOG functions.

CONCLUSION

These results suggest that the transferred exogenous genes altered the expression of stress (biotic and abiotic) response genes, which were distributed in different metabolic pathways and were linked to some extent. Our results provide a theoretic basis for investigating the functional mechanisms of exogenous genes in transgenic plants.


DOI: 10.1186/1471-2156-15-S1-S7
PubMed: 25079970
PubMed Central: PMC4118631


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Transcriptome sequencing of transgenic poplar (Populus × euramericana 'Guariento') expressing multiple resistance genes.</title>
<author>
<name sortKey="Zhang, Weixi" sort="Zhang, Weixi" uniqKey="Zhang W" first="Weixi" last="Zhang">Weixi Zhang</name>
</author>
<author>
<name sortKey="Chu, Yanguang" sort="Chu, Yanguang" uniqKey="Chu Y" first="Yanguang" last="Chu">Yanguang Chu</name>
</author>
<author>
<name sortKey="Ding, Changjun" sort="Ding, Changjun" uniqKey="Ding C" first="Changjun" last="Ding">Changjun Ding</name>
</author>
<author>
<name sortKey="Zhang, Bingyu" sort="Zhang, Bingyu" uniqKey="Zhang B" first="Bingyu" last="Zhang">Bingyu Zhang</name>
</author>
<author>
<name sortKey="Huang, Qinjun" sort="Huang, Qinjun" uniqKey="Huang Q" first="Qinjun" last="Huang">Qinjun Huang</name>
</author>
<author>
<name sortKey="Hu, Zanmin" sort="Hu, Zanmin" uniqKey="Hu Z" first="Zanmin" last="Hu">Zanmin Hu</name>
</author>
<author>
<name sortKey="Huang, Rongfeng" sort="Huang, Rongfeng" uniqKey="Huang R" first="Rongfeng" last="Huang">Rongfeng Huang</name>
</author>
<author>
<name sortKey="Tian, Yingchuan" sort="Tian, Yingchuan" uniqKey="Tian Y" first="Yingchuan" last="Tian">Yingchuan Tian</name>
</author>
<author>
<name sortKey="Su, Xiaohua" sort="Su, Xiaohua" uniqKey="Su X" first="Xiaohua" last="Su">Xiaohua Su</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:25079970</idno>
<idno type="pmid">25079970</idno>
<idno type="doi">10.1186/1471-2156-15-S1-S7</idno>
<idno type="pmc">PMC4118631</idno>
<idno type="wicri:Area/Main/Corpus">002061</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002061</idno>
<idno type="wicri:Area/Main/Curation">002061</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002061</idno>
<idno type="wicri:Area/Main/Exploration">002061</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Transcriptome sequencing of transgenic poplar (Populus × euramericana 'Guariento') expressing multiple resistance genes.</title>
<author>
<name sortKey="Zhang, Weixi" sort="Zhang, Weixi" uniqKey="Zhang W" first="Weixi" last="Zhang">Weixi Zhang</name>
</author>
<author>
<name sortKey="Chu, Yanguang" sort="Chu, Yanguang" uniqKey="Chu Y" first="Yanguang" last="Chu">Yanguang Chu</name>
</author>
<author>
<name sortKey="Ding, Changjun" sort="Ding, Changjun" uniqKey="Ding C" first="Changjun" last="Ding">Changjun Ding</name>
</author>
<author>
<name sortKey="Zhang, Bingyu" sort="Zhang, Bingyu" uniqKey="Zhang B" first="Bingyu" last="Zhang">Bingyu Zhang</name>
</author>
<author>
<name sortKey="Huang, Qinjun" sort="Huang, Qinjun" uniqKey="Huang Q" first="Qinjun" last="Huang">Qinjun Huang</name>
</author>
<author>
<name sortKey="Hu, Zanmin" sort="Hu, Zanmin" uniqKey="Hu Z" first="Zanmin" last="Hu">Zanmin Hu</name>
</author>
<author>
<name sortKey="Huang, Rongfeng" sort="Huang, Rongfeng" uniqKey="Huang R" first="Rongfeng" last="Huang">Rongfeng Huang</name>
</author>
<author>
<name sortKey="Tian, Yingchuan" sort="Tian, Yingchuan" uniqKey="Tian Y" first="Yingchuan" last="Tian">Yingchuan Tian</name>
</author>
<author>
<name sortKey="Su, Xiaohua" sort="Su, Xiaohua" uniqKey="Su X" first="Xiaohua" last="Su">Xiaohua Su</name>
</author>
</analytic>
<series>
<title level="j">BMC genetics</title>
<idno type="eISSN">1471-2156</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Droughts (MeSH)</term>
<term>Floods (MeSH)</term>
<term>Genome, Plant (MeSH)</term>
<term>Herbivory (MeSH)</term>
<term>Insecta (MeSH)</term>
<term>Phylogeny (MeSH)</term>
<term>Plants, Genetically Modified (genetics)</term>
<term>Populus (genetics)</term>
<term>Sodium Chloride (MeSH)</term>
<term>Stress, Physiological (genetics)</term>
<term>Transcriptome (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux (MeSH)</term>
<term>Chlorure de sodium (MeSH)</term>
<term>Génome végétal (MeSH)</term>
<term>Herbivorie (MeSH)</term>
<term>Inondations (MeSH)</term>
<term>Insectes (MeSH)</term>
<term>Phylogenèse (MeSH)</term>
<term>Populus (génétique)</term>
<term>Stress physiologique (génétique)</term>
<term>Sécheresses (MeSH)</term>
<term>Transcriptome (MeSH)</term>
<term>Végétaux génétiquement modifiés (génétique)</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Sodium Chloride</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Plants, Genetically Modified</term>
<term>Populus</term>
<term>Stress, Physiological</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Populus</term>
<term>Stress physiologique</term>
<term>Végétaux génétiquement modifiés</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Droughts</term>
<term>Floods</term>
<term>Genome, Plant</term>
<term>Herbivory</term>
<term>Insecta</term>
<term>Phylogeny</term>
<term>Transcriptome</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Chlorure de sodium</term>
<term>Génome végétal</term>
<term>Herbivorie</term>
<term>Inondations</term>
<term>Insectes</term>
<term>Phylogenèse</term>
<term>Sécheresses</term>
<term>Transcriptome</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>Transgenic poplar (Populus × euramericana 'Guariento') plants harboring five exogenous, stress-related genes exhibit increased tolerance to multiple stresses including drought, salt, waterlogging, and insect feeding, but the complex mechanisms underlying stress tolerance in these plants have not been elucidated. Here, we analyzed the differences in the transcriptomes of the transgenic poplar line D5-20 and the non-transgenic line D5-0 using high-throughput transcriptome sequencing techniques and elucidated the functions of the differentially expressed genes using various functional annotation methods.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>We generated 11.80 Gb of sequencing data containing 63, 430, 901 sequences, with an average length of 200 bp. The processed sequences were mapped to reference genome sequences of Populus trichocarpa. An average of 62.30% and 61.48% sequences could be aligned with the reference genomes for D5-20 and D5-0, respectively. We detected 11,352 (D5-20) and 11,372 expressed genes (D5-0), 7,624 (56.61%; D5-20) and 7,453 (65.54%; D5-0) of which could be functionally annotated. A total of 782 differentially expressed genes in D5-20 were identified compared with D5-0, including 628 up-regulated and 154 down-regulated genes. In addition, 196 genes with putative functions related to stress responses were also annotated. Gene Ontology (GO) analysis revealed that 346 differentially expressed genes are mainly involved in 67 biological functions, such as DNA binding and nucleus. KEGG annotation revealed that 36 genes (21 up-regulated and 15 down-regulated) were enriched in 51 biological pathways, 9 of which are linked to glucose metabolism. KOG functional classification revealed that 475 genes were enriched in 23 types of KOG functions.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSION</b>
</p>
<p>These results suggest that the transferred exogenous genes altered the expression of stress (biotic and abiotic) response genes, which were distributed in different metabolic pathways and were linked to some extent. Our results provide a theoretic basis for investigating the functional mechanisms of exogenous genes in transgenic plants.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">25079970</PMID>
<DateCompleted>
<Year>2014</Year>
<Month>10</Month>
<Day>16</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1471-2156</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>15 Suppl 1</Volume>
<PubDate>
<Year>2014</Year>
</PubDate>
</JournalIssue>
<Title>BMC genetics</Title>
<ISOAbbreviation>BMC Genet</ISOAbbreviation>
</Journal>
<ArticleTitle>Transcriptome sequencing of transgenic poplar (Populus × euramericana 'Guariento') expressing multiple resistance genes.</ArticleTitle>
<Pagination>
<MedlinePgn>S7</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/1471-2156-15-S1-S7</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Transgenic poplar (Populus × euramericana 'Guariento') plants harboring five exogenous, stress-related genes exhibit increased tolerance to multiple stresses including drought, salt, waterlogging, and insect feeding, but the complex mechanisms underlying stress tolerance in these plants have not been elucidated. Here, we analyzed the differences in the transcriptomes of the transgenic poplar line D5-20 and the non-transgenic line D5-0 using high-throughput transcriptome sequencing techniques and elucidated the functions of the differentially expressed genes using various functional annotation methods.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">We generated 11.80 Gb of sequencing data containing 63, 430, 901 sequences, with an average length of 200 bp. The processed sequences were mapped to reference genome sequences of Populus trichocarpa. An average of 62.30% and 61.48% sequences could be aligned with the reference genomes for D5-20 and D5-0, respectively. We detected 11,352 (D5-20) and 11,372 expressed genes (D5-0), 7,624 (56.61%; D5-20) and 7,453 (65.54%; D5-0) of which could be functionally annotated. A total of 782 differentially expressed genes in D5-20 were identified compared with D5-0, including 628 up-regulated and 154 down-regulated genes. In addition, 196 genes with putative functions related to stress responses were also annotated. Gene Ontology (GO) analysis revealed that 346 differentially expressed genes are mainly involved in 67 biological functions, such as DNA binding and nucleus. KEGG annotation revealed that 36 genes (21 up-regulated and 15 down-regulated) were enriched in 51 biological pathways, 9 of which are linked to glucose metabolism. KOG functional classification revealed that 475 genes were enriched in 23 types of KOG functions.</AbstractText>
<AbstractText Label="CONCLUSION" NlmCategory="CONCLUSIONS">These results suggest that the transferred exogenous genes altered the expression of stress (biotic and abiotic) response genes, which were distributed in different metabolic pathways and were linked to some extent. Our results provide a theoretic basis for investigating the functional mechanisms of exogenous genes in transgenic plants.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Weixi</ForeName>
<Initials>W</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Chu</LastName>
<ForeName>Yanguang</ForeName>
<Initials>Y</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ding</LastName>
<ForeName>Changjun</ForeName>
<Initials>C</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Bingyu</ForeName>
<Initials>B</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Huang</LastName>
<ForeName>Qinjun</ForeName>
<Initials>Q</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Hu</LastName>
<ForeName>Zanmin</ForeName>
<Initials>Z</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Huang</LastName>
<ForeName>Rongfeng</ForeName>
<Initials>R</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Tian</LastName>
<ForeName>Yingchuan</ForeName>
<Initials>Y</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Su</LastName>
<ForeName>Xiaohua</ForeName>
<Initials>X</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>06</Month>
<Day>20</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>BMC Genet</MedlineTA>
<NlmUniqueID>100966978</NlmUniqueID>
<ISSNLinking>1471-2156</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>451W47IQ8X</RegistryNumber>
<NameOfSubstance UI="D012965">Sodium Chloride</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055864" MajorTopicYN="N">Droughts</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055868" MajorTopicYN="N">Floods</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018745" MajorTopicYN="Y">Genome, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D060434" MajorTopicYN="N">Herbivory</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007313" MajorTopicYN="N">Insecta</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="N">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030821" MajorTopicYN="N">Plants, Genetically Modified</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012965" MajorTopicYN="N">Sodium Chloride</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013312" MajorTopicYN="N">Stress, Physiological</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059467" MajorTopicYN="Y">Transcriptome</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>8</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>8</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>10</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25079970</ArticleId>
<ArticleId IdType="pii">1471-2156-15-S1-S7</ArticleId>
<ArticleId IdType="doi">10.1186/1471-2156-15-S1-S7</ArticleId>
<ArticleId IdType="pmc">PMC4118631</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Biochim Biophys Acta. 2001 Feb 9;1510(1-2):307-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11342168</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2013 Jun;74(5):852-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23480402</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2007 Nov;65(4):511-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17541706</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 1993;191(3):394-401</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7764025</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2009 Feb;29(2):273-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19203952</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2005 Mar;23(10-11):710-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15747159</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 May;138(1):341-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15834008</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2007 Jan;26(1):115-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16937149</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2002 Aug;5(4):325-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12179966</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2003 Jul;1(4):287-300</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17163905</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2007 Mar 20;581(6):1179-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17336300</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1994 Apr;6(4):561-570</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12244248</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods. 2001 Dec;25(4):402-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11846609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2000 May;123(1):393-402</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10806256</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2008 Jul;5(7):621-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18516045</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2010 Jul;28(7):656-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20622831</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2000 Sep;5(9):380-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10973093</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2010 Aug;22(8):2660-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20798329</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Prog. 2002 Mar-Apr;18(2):229-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11934289</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1982 Jan;69(1):112-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16662140</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011;6(8):e23466</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21858131</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2006 Aug;9(4):436-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16759898</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2011 Oct;62(14):4787-803</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21821598</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2008 Dec;148(4):1953-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18945933</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2003 Oct;8(10):505-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14557048</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Genet Genomics. 2008 Dec;280(6):497-508</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18800227</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2011 May;31(5):567-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21561923</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1979 Feb;91(2):317-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17248886</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Prog. 1994 May-Jun;10(3):308-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7764938</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2008 Jul;67(5):519-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18427932</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2000 Jan 14;287(5451):303-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10634784</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 1993 Mar;189(3):329-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24178489</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Apr;152(4):1787-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20118272</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2002 Oct;5(5):430-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12183182</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2008;59(15):4095-107</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18832187</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2008 Mar;27(3):411-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18026957</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Microbiol. 1998 Mar;36(3):175-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9516547</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2002 Jan;214(3):345-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11855639</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2004 Jan;55(395):225-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14673035</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2007 Dec;65(6):719-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17874224</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2002 Oct;50(3):379-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12369615</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2000 Mar 7;1477(1-2):112-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10708853</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1999 Nov 26;274(48):34045-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10567371</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Dec 10;99(25):15898-903</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12456878</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arabidopsis Book. 2002;1:e0028</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22303202</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Nov 28;278(48):47905-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12970342</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011;6(9):e24614</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21931776</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2003 Jan;54(382):549-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12508066</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Cell Biol. 1992;8:67-113</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1282354</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Transgenic Res. 1998 Mar;7(2):77-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9608735</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biotechnol. 1999 Jan;17(1):21-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10098274</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2011 Jan;6(1):8-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21248475</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Jan 25;108(4):1717-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21220313</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Transgenic Res. 2006 Feb;15(1):13-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16475006</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2005 Jul 10;1729(3):174-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15964083</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biophys J. 2003 May;84(5):3147-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12719244</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Lett. 2010 Sep;32(9):1325-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20464449</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 1997 Mar;15(3):244-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9062923</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Transgenic Res. 2011 Jun;20(3):523-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20703808</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Aug 29;103(35):12987-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16924117</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2011 Aug;9(6):693-702</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21040388</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2009 Jan;14(1):37-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19054707</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1990 Jul 25;18(14):4149-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2198533</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2008 Jul 4;371(3):468-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18442469</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Rep. 2009 Nov;36(8):2365-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19214776</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2002 Oct;68(10):4835-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12324328</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2010 Jun;73(3):349-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20349115</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biomed Res Int. 2013;2013:918136</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23509803</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2011 Jun;66(6):1053-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21418355</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 2012 Aug 10;504(2):203-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22634611</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1998 Sep 15;17(18):5484-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9736626</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1998 Apr;14(1):137-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15494059</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1999 Jan;119(1):123-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9880353</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list></list>
<tree>
<noCountry>
<name sortKey="Chu, Yanguang" sort="Chu, Yanguang" uniqKey="Chu Y" first="Yanguang" last="Chu">Yanguang Chu</name>
<name sortKey="Ding, Changjun" sort="Ding, Changjun" uniqKey="Ding C" first="Changjun" last="Ding">Changjun Ding</name>
<name sortKey="Hu, Zanmin" sort="Hu, Zanmin" uniqKey="Hu Z" first="Zanmin" last="Hu">Zanmin Hu</name>
<name sortKey="Huang, Qinjun" sort="Huang, Qinjun" uniqKey="Huang Q" first="Qinjun" last="Huang">Qinjun Huang</name>
<name sortKey="Huang, Rongfeng" sort="Huang, Rongfeng" uniqKey="Huang R" first="Rongfeng" last="Huang">Rongfeng Huang</name>
<name sortKey="Su, Xiaohua" sort="Su, Xiaohua" uniqKey="Su X" first="Xiaohua" last="Su">Xiaohua Su</name>
<name sortKey="Tian, Yingchuan" sort="Tian, Yingchuan" uniqKey="Tian Y" first="Yingchuan" last="Tian">Yingchuan Tian</name>
<name sortKey="Zhang, Bingyu" sort="Zhang, Bingyu" uniqKey="Zhang B" first="Bingyu" last="Zhang">Bingyu Zhang</name>
<name sortKey="Zhang, Weixi" sort="Zhang, Weixi" uniqKey="Zhang W" first="Weixi" last="Zhang">Weixi Zhang</name>
</noCountry>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001F90 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001F90 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:25079970
   |texte=   Transcriptome sequencing of transgenic poplar (Populus × euramericana 'Guariento') expressing multiple resistance genes.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:25079970" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020