Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Tree age-dependent changes in photosynthetic and respiratory CO2 exchange in leaves of micropropagated diploid, triploid and hybrid aspen.

Identifieur interne : 001F86 ( Main/Exploration ); précédent : 001F85; suivant : 001F87

Tree age-dependent changes in photosynthetic and respiratory CO2 exchange in leaves of micropropagated diploid, triploid and hybrid aspen.

Auteurs : Tiit P Rnik [Estonie] ; Hiie Ivanova [Estonie] ; Olav Keerberg [Estonie] ; Rael Vardja [Estonie] ; Ulo Niinemets [Estonie]

Source :

RBID : pubmed:24898219

Descripteurs français

English descriptors

Abstract

The growth rate of triploid European aspen (Populus tremula L.) and hybrid aspen (P. tremula × Populus tremuloides Michx.) significantly exceeds that of diploid aspen, but the underlying physiological controls of the superior growth rates of these genotypes are not known. We tested the hypothesis that the superior growth rate of triploid and hybrid aspen reflects their greater net photosynthesis rate. Micropropagated clonal plants varying in age from 2.5 to 19 months were used to investigate the ploidy and plant age interaction. The quantum yield of net CO2 fixation (Φ) in leaves of young 2.5-month-old hybrid aspen was lower than that of diploid and triploid trees. However, Φ in 19-month-old hybrid aspen was equal to that in triploid aspen and higher than that in diploid aspen. Φ and the rate of light-saturated net photosynthesis (ANS) increased with plant age, largely due to higher leaf dry mass per unit area in older plants. ANS in leaves of 19-month-old trees was highest in hybrid, medium in triploid and lowest in diploid aspen. Light-saturated photosynthesis had a broad temperature optimum between 20 and 35 °C. Rate of respiration in the dark (RDS) did not vary among the genotypes in 2.5-month-old plants, and the shape of the temperature response was also similar. RDS increased with plant age, but RDS was still not significantly different among the leaves of 19-month-old diploid and triploid aspen, but it was significantly lower in leaves of 19-month-old hybrid plants. The initial differences in the growth of plants with different ploidy were minor up to the age of 19 months, but during the next 2 years, the growth rate of hybrid aspen exceeded that of triploid plants by 2.7 times and of diploid plants by five times, in line with differences in ANS of 19-month-old plants of these species. It is suggested that differences in photosynthesis and growth became more pronounced with tree aging, indicating that ontogeny plays a key role in the expression of superior traits determining the productivity of given genotypes.

DOI: 10.1093/treephys/tpu043
PubMed: 24898219


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Tree age-dependent changes in photosynthetic and respiratory CO2 exchange in leaves of micropropagated diploid, triploid and hybrid aspen.</title>
<author>
<name sortKey="P Rnik, Tiit" sort="P Rnik, Tiit" uniqKey="P Rnik T" first="Tiit" last="P Rnik">Tiit P Rnik</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51014 Tartu, Estonia tiit.parnik@emu.ee.</nlm:affiliation>
<country wicri:rule="url">Estonie</country>
<wicri:regionArea>Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51014 Tartu</wicri:regionArea>
<wicri:noRegion>51014 Tartu</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ivanova, Hiie" sort="Ivanova, Hiie" uniqKey="Ivanova H" first="Hiie" last="Ivanova">Hiie Ivanova</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51014 Tartu, Estonia.</nlm:affiliation>
<country xml:lang="fr">Estonie</country>
<wicri:regionArea>Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51014 Tartu</wicri:regionArea>
<wicri:noRegion>51014 Tartu</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Keerberg, Olav" sort="Keerberg, Olav" uniqKey="Keerberg O" first="Olav" last="Keerberg">Olav Keerberg</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51014 Tartu, Estonia.</nlm:affiliation>
<country xml:lang="fr">Estonie</country>
<wicri:regionArea>Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51014 Tartu</wicri:regionArea>
<wicri:noRegion>51014 Tartu</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Vardja, Rael" sort="Vardja, Rael" uniqKey="Vardja R" first="Rael" last="Vardja">Rael Vardja</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51014 Tartu, Estonia.</nlm:affiliation>
<country xml:lang="fr">Estonie</country>
<wicri:regionArea>Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51014 Tartu</wicri:regionArea>
<wicri:noRegion>51014 Tartu</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Niinemets, Ulo" sort="Niinemets, Ulo" uniqKey="Niinemets U" first="Ulo" last="Niinemets">Ulo Niinemets</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51014 Tartu, Estonia.</nlm:affiliation>
<country xml:lang="fr">Estonie</country>
<wicri:regionArea>Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51014 Tartu</wicri:regionArea>
<wicri:noRegion>51014 Tartu</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:24898219</idno>
<idno type="pmid">24898219</idno>
<idno type="doi">10.1093/treephys/tpu043</idno>
<idno type="wicri:Area/Main/Corpus">002150</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002150</idno>
<idno type="wicri:Area/Main/Curation">002150</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002150</idno>
<idno type="wicri:Area/Main/Exploration">002150</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Tree age-dependent changes in photosynthetic and respiratory CO2 exchange in leaves of micropropagated diploid, triploid and hybrid aspen.</title>
<author>
<name sortKey="P Rnik, Tiit" sort="P Rnik, Tiit" uniqKey="P Rnik T" first="Tiit" last="P Rnik">Tiit P Rnik</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51014 Tartu, Estonia tiit.parnik@emu.ee.</nlm:affiliation>
<country wicri:rule="url">Estonie</country>
<wicri:regionArea>Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51014 Tartu</wicri:regionArea>
<wicri:noRegion>51014 Tartu</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ivanova, Hiie" sort="Ivanova, Hiie" uniqKey="Ivanova H" first="Hiie" last="Ivanova">Hiie Ivanova</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51014 Tartu, Estonia.</nlm:affiliation>
<country xml:lang="fr">Estonie</country>
<wicri:regionArea>Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51014 Tartu</wicri:regionArea>
<wicri:noRegion>51014 Tartu</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Keerberg, Olav" sort="Keerberg, Olav" uniqKey="Keerberg O" first="Olav" last="Keerberg">Olav Keerberg</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51014 Tartu, Estonia.</nlm:affiliation>
<country xml:lang="fr">Estonie</country>
<wicri:regionArea>Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51014 Tartu</wicri:regionArea>
<wicri:noRegion>51014 Tartu</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Vardja, Rael" sort="Vardja, Rael" uniqKey="Vardja R" first="Rael" last="Vardja">Rael Vardja</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51014 Tartu, Estonia.</nlm:affiliation>
<country xml:lang="fr">Estonie</country>
<wicri:regionArea>Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51014 Tartu</wicri:regionArea>
<wicri:noRegion>51014 Tartu</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Niinemets, Ulo" sort="Niinemets, Ulo" uniqKey="Niinemets U" first="Ulo" last="Niinemets">Ulo Niinemets</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51014 Tartu, Estonia.</nlm:affiliation>
<country xml:lang="fr">Estonie</country>
<wicri:regionArea>Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51014 Tartu</wicri:regionArea>
<wicri:noRegion>51014 Tartu</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Tree physiology</title>
<idno type="eISSN">1758-4469</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Biomass (MeSH)</term>
<term>Carbon Dioxide (metabolism)</term>
<term>Cell Respiration (MeSH)</term>
<term>Chimera (MeSH)</term>
<term>Diploidy (MeSH)</term>
<term>Light (MeSH)</term>
<term>Photosynthesis (physiology)</term>
<term>Plant Leaves (growth & development)</term>
<term>Plant Leaves (metabolism)</term>
<term>Plant Leaves (physiology)</term>
<term>Plant Leaves (radiation effects)</term>
<term>Ploidies (MeSH)</term>
<term>Populus (growth & development)</term>
<term>Populus (metabolism)</term>
<term>Populus (physiology)</term>
<term>Populus (radiation effects)</term>
<term>Trees (MeSH)</term>
<term>Triploidy (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Arbres (MeSH)</term>
<term>Biomasse (MeSH)</term>
<term>Chimère (MeSH)</term>
<term>Dioxyde de carbone (métabolisme)</term>
<term>Diploïdie (MeSH)</term>
<term>Feuilles de plante (croissance et développement)</term>
<term>Feuilles de plante (effets des radiations)</term>
<term>Feuilles de plante (métabolisme)</term>
<term>Feuilles de plante (physiologie)</term>
<term>Lumière (MeSH)</term>
<term>Photosynthèse (physiologie)</term>
<term>Ploïdies (MeSH)</term>
<term>Populus (croissance et développement)</term>
<term>Populus (effets des radiations)</term>
<term>Populus (métabolisme)</term>
<term>Populus (physiologie)</term>
<term>Respiration cellulaire (MeSH)</term>
<term>Triploïdie (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Carbon Dioxide</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Feuilles de plante</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des radiations" xml:lang="fr">
<term>Feuilles de plante</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Plant Leaves</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Plant Leaves</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Dioxyde de carbone</term>
<term>Feuilles de plante</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Feuilles de plante</term>
<term>Photosynthèse</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Photosynthesis</term>
<term>Plant Leaves</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="radiation effects" xml:lang="en">
<term>Plant Leaves</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biomass</term>
<term>Cell Respiration</term>
<term>Chimera</term>
<term>Diploidy</term>
<term>Light</term>
<term>Ploidies</term>
<term>Trees</term>
<term>Triploidy</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Arbres</term>
<term>Biomasse</term>
<term>Chimère</term>
<term>Diploïdie</term>
<term>Lumière</term>
<term>Ploïdies</term>
<term>Respiration cellulaire</term>
<term>Triploïdie</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The growth rate of triploid European aspen (Populus tremula L.) and hybrid aspen (P. tremula × Populus tremuloides Michx.) significantly exceeds that of diploid aspen, but the underlying physiological controls of the superior growth rates of these genotypes are not known. We tested the hypothesis that the superior growth rate of triploid and hybrid aspen reflects their greater net photosynthesis rate. Micropropagated clonal plants varying in age from 2.5 to 19 months were used to investigate the ploidy and plant age interaction. The quantum yield of net CO2 fixation (Φ) in leaves of young 2.5-month-old hybrid aspen was lower than that of diploid and triploid trees. However, Φ in 19-month-old hybrid aspen was equal to that in triploid aspen and higher than that in diploid aspen. Φ and the rate of light-saturated net photosynthesis (ANS) increased with plant age, largely due to higher leaf dry mass per unit area in older plants. ANS in leaves of 19-month-old trees was highest in hybrid, medium in triploid and lowest in diploid aspen. Light-saturated photosynthesis had a broad temperature optimum between 20 and 35 °C. Rate of respiration in the dark (RDS) did not vary among the genotypes in 2.5-month-old plants, and the shape of the temperature response was also similar. RDS increased with plant age, but RDS was still not significantly different among the leaves of 19-month-old diploid and triploid aspen, but it was significantly lower in leaves of 19-month-old hybrid plants. The initial differences in the growth of plants with different ploidy were minor up to the age of 19 months, but during the next 2 years, the growth rate of hybrid aspen exceeded that of triploid plants by 2.7 times and of diploid plants by five times, in line with differences in ANS of 19-month-old plants of these species. It is suggested that differences in photosynthesis and growth became more pronounced with tree aging, indicating that ontogeny plays a key role in the expression of superior traits determining the productivity of given genotypes. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">24898219</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>02</Month>
<Day>12</Day>
</DateCompleted>
<DateRevised>
<Year>2014</Year>
<Month>07</Month>
<Day>08</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1758-4469</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>34</Volume>
<Issue>6</Issue>
<PubDate>
<Year>2014</Year>
<Month>Jun</Month>
</PubDate>
</JournalIssue>
<Title>Tree physiology</Title>
<ISOAbbreviation>Tree Physiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Tree age-dependent changes in photosynthetic and respiratory CO2 exchange in leaves of micropropagated diploid, triploid and hybrid aspen.</ArticleTitle>
<Pagination>
<MedlinePgn>585-94</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1093/treephys/tpu043</ELocationID>
<Abstract>
<AbstractText>The growth rate of triploid European aspen (Populus tremula L.) and hybrid aspen (P. tremula × Populus tremuloides Michx.) significantly exceeds that of diploid aspen, but the underlying physiological controls of the superior growth rates of these genotypes are not known. We tested the hypothesis that the superior growth rate of triploid and hybrid aspen reflects their greater net photosynthesis rate. Micropropagated clonal plants varying in age from 2.5 to 19 months were used to investigate the ploidy and plant age interaction. The quantum yield of net CO2 fixation (Φ) in leaves of young 2.5-month-old hybrid aspen was lower than that of diploid and triploid trees. However, Φ in 19-month-old hybrid aspen was equal to that in triploid aspen and higher than that in diploid aspen. Φ and the rate of light-saturated net photosynthesis (ANS) increased with plant age, largely due to higher leaf dry mass per unit area in older plants. ANS in leaves of 19-month-old trees was highest in hybrid, medium in triploid and lowest in diploid aspen. Light-saturated photosynthesis had a broad temperature optimum between 20 and 35 °C. Rate of respiration in the dark (RDS) did not vary among the genotypes in 2.5-month-old plants, and the shape of the temperature response was also similar. RDS increased with plant age, but RDS was still not significantly different among the leaves of 19-month-old diploid and triploid aspen, but it was significantly lower in leaves of 19-month-old hybrid plants. The initial differences in the growth of plants with different ploidy were minor up to the age of 19 months, but during the next 2 years, the growth rate of hybrid aspen exceeded that of triploid plants by 2.7 times and of diploid plants by five times, in line with differences in ANS of 19-month-old plants of these species. It is suggested that differences in photosynthesis and growth became more pronounced with tree aging, indicating that ontogeny plays a key role in the expression of superior traits determining the productivity of given genotypes. </AbstractText>
<CopyrightInformation>© The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Pärnik</LastName>
<ForeName>Tiit</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51014 Tartu, Estonia tiit.parnik@emu.ee.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ivanova</LastName>
<ForeName>Hiie</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51014 Tartu, Estonia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Keerberg</LastName>
<ForeName>Olav</ForeName>
<Initials>O</Initials>
<AffiliationInfo>
<Affiliation>Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51014 Tartu, Estonia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Vardja</LastName>
<ForeName>Rael</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51014 Tartu, Estonia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Niinemets</LastName>
<ForeName>Ulo</ForeName>
<Initials>U</Initials>
<AffiliationInfo>
<Affiliation>Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51014 Tartu, Estonia.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>06</Month>
<Day>03</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Canada</Country>
<MedlineTA>Tree Physiol</MedlineTA>
<NlmUniqueID>100955338</NlmUniqueID>
<ISSNLinking>0829-318X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>142M471B3J</RegistryNumber>
<NameOfSubstance UI="D002245">Carbon Dioxide</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D018533" MajorTopicYN="N">Biomass</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002245" MajorTopicYN="N">Carbon Dioxide</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019069" MajorTopicYN="N">Cell Respiration</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002678" MajorTopicYN="N">Chimera</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004171" MajorTopicYN="N">Diploidy</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008027" MajorTopicYN="N">Light</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010788" MajorTopicYN="N">Photosynthesis</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
<QualifierName UI="Q000528" MajorTopicYN="N">radiation effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011003" MajorTopicYN="N">Ploidies</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
<QualifierName UI="Q000528" MajorTopicYN="N">radiation effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014197" MajorTopicYN="N">Trees</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D057885" MajorTopicYN="N">Triploidy</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">dry mass per leaf area</Keyword>
<Keyword MajorTopicYN="N">irradiance</Keyword>
<Keyword MajorTopicYN="N">leaf structure</Keyword>
<Keyword MajorTopicYN="N">net CO2 assimilation</Keyword>
<Keyword MajorTopicYN="N">ploidy level</Keyword>
<Keyword MajorTopicYN="N">respiration in the dark</Keyword>
<Keyword MajorTopicYN="N">temperature dependencies</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>6</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>6</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>2</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24898219</ArticleId>
<ArticleId IdType="pii">tpu043</ArticleId>
<ArticleId IdType="doi">10.1093/treephys/tpu043</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Estonie</li>
</country>
</list>
<tree>
<country name="Estonie">
<noRegion>
<name sortKey="P Rnik, Tiit" sort="P Rnik, Tiit" uniqKey="P Rnik T" first="Tiit" last="P Rnik">Tiit P Rnik</name>
</noRegion>
<name sortKey="Ivanova, Hiie" sort="Ivanova, Hiie" uniqKey="Ivanova H" first="Hiie" last="Ivanova">Hiie Ivanova</name>
<name sortKey="Keerberg, Olav" sort="Keerberg, Olav" uniqKey="Keerberg O" first="Olav" last="Keerberg">Olav Keerberg</name>
<name sortKey="Niinemets, Ulo" sort="Niinemets, Ulo" uniqKey="Niinemets U" first="Ulo" last="Niinemets">Ulo Niinemets</name>
<name sortKey="Vardja, Rael" sort="Vardja, Rael" uniqKey="Vardja R" first="Rael" last="Vardja">Rael Vardja</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001F86 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001F86 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:24898219
   |texte=   Tree age-dependent changes in photosynthetic and respiratory CO2 exchange in leaves of micropropagated diploid, triploid and hybrid aspen.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:24898219" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020