Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Insights into plant cell wall structure, architecture, and integrity using glycome profiling of native and AFEXTM-pre-treated biomass.

Identifieur interne : 001C85 ( Main/Exploration ); précédent : 001C84; suivant : 001C86

Insights into plant cell wall structure, architecture, and integrity using glycome profiling of native and AFEXTM-pre-treated biomass.

Auteurs : Sivakumar Pattathil [États-Unis] ; Michael G. Hahn [États-Unis] ; Bruce E. Dale [États-Unis] ; Shishir P S. Chundawat [États-Unis]

Source :

RBID : pubmed:25911738

Descripteurs français

English descriptors

Abstract

Cell walls, which constitute the bulk of plant biomass, vary considerably in their structure, composition, and architecture. Studies on plant cell walls can be conducted on both native and pre-treated plant biomass samples, allowing an enhanced understanding of these structural and compositional variations. Here glycome profiling was employed to determine the relative abundance of matrix polysaccharides in several phylogenetically distinct native and pre-treated plant biomasses. Eight distinct biomass types belonging to four different subgroups (i.e. monocot grasses, woody dicots, herbaceous dicots, and softwoods) were subjected to various regimes of AFEX™ (ammonia fiber expansion) pre-treatment [AFEX is a trademark of MBI, Lansing (http://www.mbi.org]. This approach allowed detailed analysis of close to 200 cell wall glycan epitopes and their relative extractability using a high-throughput platform. In general, irrespective of the phylogenetic origin, AFEX™ pre-treatment appeared to cause loosening and improved accessibility of various xylan epitope subclasses in most plant biomass materials studied. For most biomass types analysed, such loosening was also evident for other major non-cellulosic components including subclasses of pectin and xyloglucan epitopes. The studies also demonstrate that AFEX™ pre-treatment significantly reduced cell wall recalcitrance among diverse phylogenies (except softwoods) by inducing structural modifications to polysaccharides that were not detectable by conventional gross composition analyses. It was found that monitoring changes in cell wall glycan compositions and their relative extractability for untreated and pre-treated plant biomass can provide an improved understanding of variations in structure and composition of plant cell walls and delineate the role(s) of matrix polysaccharides in cell wall recalcitrance.

DOI: 10.1093/jxb/erv107
PubMed: 25911738
PubMed Central: PMC4493783


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Insights into plant cell wall structure, architecture, and integrity using glycome profiling of native and AFEXTM-pre-treated biomass.</title>
<author>
<name sortKey="Pattathil, Sivakumar" sort="Pattathil, Sivakumar" uniqKey="Pattathil S" first="Sivakumar" last="Pattathil">Sivakumar Pattathil</name>
<affiliation wicri:level="2">
<nlm:affiliation>Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA siva@ccrc.uga.edu shishir.chundawat@rutgers.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831</wicri:regionArea>
<placeName>
<region type="state">Tennessee</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Hahn, Michael G" sort="Hahn, Michael G" uniqKey="Hahn M" first="Michael G" last="Hahn">Michael G. Hahn</name>
<affiliation wicri:level="2">
<nlm:affiliation>Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831</wicri:regionArea>
<placeName>
<region type="state">Tennessee</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Dale, Bruce E" sort="Dale, Bruce E" uniqKey="Dale B" first="Bruce E" last="Dale">Bruce E. Dale</name>
<affiliation wicri:level="4">
<nlm:affiliation>DOE Great Lakes Bioenergy Research Center, Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>DOE Great Lakes Bioenergy Research Center, Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824</wicri:regionArea>
<placeName>
<region type="state">Michigan</region>
<settlement type="city">East Lansing</settlement>
</placeName>
<orgName type="university">Université d'État du Michigan</orgName>
</affiliation>
</author>
<author>
<name sortKey="Chundawat, Shishir P S" sort="Chundawat, Shishir P S" uniqKey="Chundawat S" first="Shishir P S" last="Chundawat">Shishir P S. Chundawat</name>
<affiliation wicri:level="4">
<nlm:affiliation>DOE Great Lakes Bioenergy Research Center, Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824, USA Present address: Department of Chemical and Biochemical Engineering, C-150A Engineering Building, Rutgers The State University of New Jersey, Piscataway, NJ 08854, USA siva@ccrc.uga.edu shishir.chundawat@rutgers.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>DOE Great Lakes Bioenergy Research Center, Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824, USA Present address: Department of Chemical and Biochemical Engineering, C-150A Engineering Building, Rutgers The State University of New Jersey, Piscataway, NJ 08854</wicri:regionArea>
<placeName>
<region type="state">New Jersey</region>
<settlement type="city">East Lansing</settlement>
</placeName>
<orgName type="university">Université d'État du Michigan</orgName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:25911738</idno>
<idno type="pmid">25911738</idno>
<idno type="doi">10.1093/jxb/erv107</idno>
<idno type="pmc">PMC4493783</idno>
<idno type="wicri:Area/Main/Corpus">001D22</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001D22</idno>
<idno type="wicri:Area/Main/Curation">001D22</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001D22</idno>
<idno type="wicri:Area/Main/Exploration">001D22</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Insights into plant cell wall structure, architecture, and integrity using glycome profiling of native and AFEXTM-pre-treated biomass.</title>
<author>
<name sortKey="Pattathil, Sivakumar" sort="Pattathil, Sivakumar" uniqKey="Pattathil S" first="Sivakumar" last="Pattathil">Sivakumar Pattathil</name>
<affiliation wicri:level="2">
<nlm:affiliation>Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA siva@ccrc.uga.edu shishir.chundawat@rutgers.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831</wicri:regionArea>
<placeName>
<region type="state">Tennessee</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Hahn, Michael G" sort="Hahn, Michael G" uniqKey="Hahn M" first="Michael G" last="Hahn">Michael G. Hahn</name>
<affiliation wicri:level="2">
<nlm:affiliation>Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831</wicri:regionArea>
<placeName>
<region type="state">Tennessee</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Dale, Bruce E" sort="Dale, Bruce E" uniqKey="Dale B" first="Bruce E" last="Dale">Bruce E. Dale</name>
<affiliation wicri:level="4">
<nlm:affiliation>DOE Great Lakes Bioenergy Research Center, Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>DOE Great Lakes Bioenergy Research Center, Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824</wicri:regionArea>
<placeName>
<region type="state">Michigan</region>
<settlement type="city">East Lansing</settlement>
</placeName>
<orgName type="university">Université d'État du Michigan</orgName>
</affiliation>
</author>
<author>
<name sortKey="Chundawat, Shishir P S" sort="Chundawat, Shishir P S" uniqKey="Chundawat S" first="Shishir P S" last="Chundawat">Shishir P S. Chundawat</name>
<affiliation wicri:level="4">
<nlm:affiliation>DOE Great Lakes Bioenergy Research Center, Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824, USA Present address: Department of Chemical and Biochemical Engineering, C-150A Engineering Building, Rutgers The State University of New Jersey, Piscataway, NJ 08854, USA siva@ccrc.uga.edu shishir.chundawat@rutgers.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>DOE Great Lakes Bioenergy Research Center, Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824, USA Present address: Department of Chemical and Biochemical Engineering, C-150A Engineering Building, Rutgers The State University of New Jersey, Piscataway, NJ 08854</wicri:regionArea>
<placeName>
<region type="state">New Jersey</region>
<settlement type="city">East Lansing</settlement>
</placeName>
<orgName type="university">Université d'État du Michigan</orgName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of experimental botany</title>
<idno type="eISSN">1460-2431</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Biomass (MeSH)</term>
<term>Carbohydrates (chemistry)</term>
<term>Cell Wall (chemistry)</term>
<term>Populus (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Biomasse (MeSH)</term>
<term>Glucides (composition chimique)</term>
<term>Paroi cellulaire (composition chimique)</term>
<term>Populus (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Carbohydrates</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Cell Wall</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Glucides</term>
<term>Paroi cellulaire</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biomass</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Biomasse</term>
<term>Populus</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Cell walls, which constitute the bulk of plant biomass, vary considerably in their structure, composition, and architecture. Studies on plant cell walls can be conducted on both native and pre-treated plant biomass samples, allowing an enhanced understanding of these structural and compositional variations. Here glycome profiling was employed to determine the relative abundance of matrix polysaccharides in several phylogenetically distinct native and pre-treated plant biomasses. Eight distinct biomass types belonging to four different subgroups (i.e. monocot grasses, woody dicots, herbaceous dicots, and softwoods) were subjected to various regimes of AFEX™ (ammonia fiber expansion) pre-treatment [AFEX is a trademark of MBI, Lansing (http://www.mbi.org]. This approach allowed detailed analysis of close to 200 cell wall glycan epitopes and their relative extractability using a high-throughput platform. In general, irrespective of the phylogenetic origin, AFEX™ pre-treatment appeared to cause loosening and improved accessibility of various xylan epitope subclasses in most plant biomass materials studied. For most biomass types analysed, such loosening was also evident for other major non-cellulosic components including subclasses of pectin and xyloglucan epitopes. The studies also demonstrate that AFEX™ pre-treatment significantly reduced cell wall recalcitrance among diverse phylogenies (except softwoods) by inducing structural modifications to polysaccharides that were not detectable by conventional gross composition analyses. It was found that monitoring changes in cell wall glycan compositions and their relative extractability for untreated and pre-treated plant biomass can provide an improved understanding of variations in structure and composition of plant cell walls and delineate the role(s) of matrix polysaccharides in cell wall recalcitrance. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">25911738</PMID>
<DateCompleted>
<Year>2016</Year>
<Month>04</Month>
<Day>05</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1460-2431</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>66</Volume>
<Issue>14</Issue>
<PubDate>
<Year>2015</Year>
<Month>Jul</Month>
</PubDate>
</JournalIssue>
<Title>Journal of experimental botany</Title>
<ISOAbbreviation>J Exp Bot</ISOAbbreviation>
</Journal>
<ArticleTitle>Insights into plant cell wall structure, architecture, and integrity using glycome profiling of native and AFEXTM-pre-treated biomass.</ArticleTitle>
<Pagination>
<MedlinePgn>4279-94</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1093/jxb/erv107</ELocationID>
<Abstract>
<AbstractText>Cell walls, which constitute the bulk of plant biomass, vary considerably in their structure, composition, and architecture. Studies on plant cell walls can be conducted on both native and pre-treated plant biomass samples, allowing an enhanced understanding of these structural and compositional variations. Here glycome profiling was employed to determine the relative abundance of matrix polysaccharides in several phylogenetically distinct native and pre-treated plant biomasses. Eight distinct biomass types belonging to four different subgroups (i.e. monocot grasses, woody dicots, herbaceous dicots, and softwoods) were subjected to various regimes of AFEX™ (ammonia fiber expansion) pre-treatment [AFEX is a trademark of MBI, Lansing (http://www.mbi.org]. This approach allowed detailed analysis of close to 200 cell wall glycan epitopes and their relative extractability using a high-throughput platform. In general, irrespective of the phylogenetic origin, AFEX™ pre-treatment appeared to cause loosening and improved accessibility of various xylan epitope subclasses in most plant biomass materials studied. For most biomass types analysed, such loosening was also evident for other major non-cellulosic components including subclasses of pectin and xyloglucan epitopes. The studies also demonstrate that AFEX™ pre-treatment significantly reduced cell wall recalcitrance among diverse phylogenies (except softwoods) by inducing structural modifications to polysaccharides that were not detectable by conventional gross composition analyses. It was found that monitoring changes in cell wall glycan compositions and their relative extractability for untreated and pre-treated plant biomass can provide an improved understanding of variations in structure and composition of plant cell walls and delineate the role(s) of matrix polysaccharides in cell wall recalcitrance. </AbstractText>
<CopyrightInformation>© The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Pattathil</LastName>
<ForeName>Sivakumar</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA siva@ccrc.uga.edu shishir.chundawat@rutgers.edu.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hahn</LastName>
<ForeName>Michael G</ForeName>
<Initials>MG</Initials>
<AffiliationInfo>
<Affiliation>Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Dale</LastName>
<ForeName>Bruce E</ForeName>
<Initials>BE</Initials>
<AffiliationInfo>
<Affiliation>DOE Great Lakes Bioenergy Research Center, Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chundawat</LastName>
<ForeName>Shishir P S</ForeName>
<Initials>SP</Initials>
<AffiliationInfo>
<Affiliation>DOE Great Lakes Bioenergy Research Center, Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824, USA Present address: Department of Chemical and Biochemical Engineering, C-150A Engineering Building, Rutgers The State University of New Jersey, Piscataway, NJ 08854, USA siva@ccrc.uga.edu shishir.chundawat@rutgers.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>04</Month>
<Day>23</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>J Exp Bot</MedlineTA>
<NlmUniqueID>9882906</NlmUniqueID>
<ISSNLinking>0022-0957</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D002241">Carbohydrates</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D018533" MajorTopicYN="Y">Biomass</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002241" MajorTopicYN="N">Carbohydrates</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002473" MajorTopicYN="N">Cell Wall</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">AFEX</Keyword>
<Keyword MajorTopicYN="N">biofuels</Keyword>
<Keyword MajorTopicYN="N">cell walls</Keyword>
<Keyword MajorTopicYN="N">glycome profiling</Keyword>
<Keyword MajorTopicYN="N">plant biomass</Keyword>
<Keyword MajorTopicYN="N">recalcitrance.</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>4</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>4</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>4</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25911738</ArticleId>
<ArticleId IdType="pii">erv107</ArticleId>
<ArticleId IdType="doi">10.1093/jxb/erv107</ArticleId>
<ArticleId IdType="pmc">PMC4493783</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Bioresour Technol. 2010 Apr;101(8):2770-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19948399</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2009;581:61-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19768616</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2013 Aug 13;110(33):13660-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23901113</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Chem Biomol Eng. 2011;2:121-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22432613</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Glycoconj J. 2008 Jan;25(1):37-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17629746</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2011 Jan;102(2):1277-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20826086</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2010 Nov;101(21):8429-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20598525</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2008 Jun;11(3):308-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18424171</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2008 Jun;11(3):301-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18434239</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2007 Feb 9;315(5813):804-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17289988</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2013 Dec 26;135(51):19048-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24274712</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Biofuels. 2014 Nov 18;7(1):136</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25426163</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biomacromolecules. 2009 Sep 14;10(9):2489-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19655790</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2011 Jul 27;133(29):11163-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21661764</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Physiol Plant Mol Biol. 1996 Jun;47:445-476</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15012297</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Proteome Res. 2011 Oct 7;10(10):4365-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21678892</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2007 Jun;50(6):1118-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17565618</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2003;54:519-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14503002</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Biofuels. 2013 May 07;6(1):71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23651942</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Jun;153(2):514-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20363856</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2013 Jan;25(1):270-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23371948</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Prog. 2009 Mar-Apr;25(2):365-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19326425</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2009 Sep;2(5):861-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19825663</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1996 Apr;110(4):1413-1429</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12226270</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chemistry. 2015 Apr 7;21(15):5709-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25720456</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2012;908:61-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22843389</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Biofuels. 2011 Feb 22;4:5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21342516</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Vis Exp. 2010;(37). pii: 1745. doi: 10.3791/1745</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20224547</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ACS Nano. 2013 Sep 24;7(9):8011-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23988022</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Biofuels. 2014 Oct 10;7(1):147</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25324897</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Carbohydr Res. 2002 Jun 5;337(11):1033-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12039544</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2008 Jun;11(3):266-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18486536</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1993 Jan;3(1):1-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8401598</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2008 May;54(4):559-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18476863</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Carbohydr Polym. 2013 May 15;94(2):791-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23544634</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2014 Sep 2;111(35):E3587-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25136131</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2005 Dec;96(18):2019-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16112490</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2012 Nov 23;338(6110):1055-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23180856</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Molecules. 2010;15(12):8641-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21116223</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1994 Feb;104(2):315-320</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12232082</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2013 May;74(3):423-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23373848</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Vis Exp. 2010;(37). pii: 1837. doi: 10.3791/1837</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20228730</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2008 Jun;11(3):286-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18406657</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Michigan</li>
<li>New Jersey</li>
<li>Tennessee</li>
</region>
<settlement>
<li>East Lansing</li>
</settlement>
<orgName>
<li>Université d'État du Michigan</li>
</orgName>
</list>
<tree>
<country name="États-Unis">
<region name="Tennessee">
<name sortKey="Pattathil, Sivakumar" sort="Pattathil, Sivakumar" uniqKey="Pattathil S" first="Sivakumar" last="Pattathil">Sivakumar Pattathil</name>
</region>
<name sortKey="Chundawat, Shishir P S" sort="Chundawat, Shishir P S" uniqKey="Chundawat S" first="Shishir P S" last="Chundawat">Shishir P S. Chundawat</name>
<name sortKey="Dale, Bruce E" sort="Dale, Bruce E" uniqKey="Dale B" first="Bruce E" last="Dale">Bruce E. Dale</name>
<name sortKey="Hahn, Michael G" sort="Hahn, Michael G" uniqKey="Hahn M" first="Michael G" last="Hahn">Michael G. Hahn</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001C85 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001C85 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:25911738
   |texte=   Insights into plant cell wall structure, architecture, and integrity using glycome profiling of native and AFEXTM-pre-treated biomass.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:25911738" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020