Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Overexpression of a peach CBF gene in apple: a model for understanding the integration of growth, dormancy, and cold hardiness in woody plants.

Identifieur interne : 001C13 ( Main/Exploration ); précédent : 001C12; suivant : 001C14

Overexpression of a peach CBF gene in apple: a model for understanding the integration of growth, dormancy, and cold hardiness in woody plants.

Auteurs : Michael Wisniewski [États-Unis] ; John Norelli [États-Unis] ; Timothy Artlip [États-Unis]

Source :

RBID : pubmed:25774159

Abstract

The timing of cold acclimation and deacclimation, dormancy, and budbreak play an integral role in the life cycle of woody plants. The molecular events that regulate these parameters have been the subject of much study, however, in most studies these events have been investigated independently of each other. Ectopic expression of a peach CBF (PpCBF1) in apple increases the level of both non-acclimated and acclimated freezing tolerance relative to the non-transformed control, and also inhibits growth, induces early bud set and leaf senescence, and delays bud break in the spring. The current study examined differences in the seasonal expression of genes (CBF, DAM, RGL, and EBB) that have been reported to be associated with freezing tolerance, dormancy, growth, and bud break, respectively, in the PpCBF1 T166 transgenic apple line and the non-transformed M.26 control. Results indicated that expression of several of these key genes, including MdDAM, MdRGL, and MdEBB was altered in transgenic T166 trees relative to non-transformed M.26 trees. In particular, several putative MdDAM genes, associated with the dormancy-cycle in other species of woody plants in the Rosaceae, exhibited different patterns of expression in the T166 vs. M.26 trees. Additionally, for the first time a putative APETALA2/Ethylene-responsive transcription factor, originally described in poplar and shown to regulate the timing of bud break, was shown to be associated with the timing of bud break in apple. Since the overexpression of PpCBF1 in apple results in a dramatic alteration in cold acclimation, dormancy, and growth, this transgenic line (T166) may represent a useful model for studying the integration of these seasonal life-cycle parameters.

DOI: 10.3389/fpls.2015.00085
PubMed: 25774159
PubMed Central: PMC4343015


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Overexpression of a peach CBF gene in apple: a model for understanding the integration of growth, dormancy, and cold hardiness in woody plants.</title>
<author>
<name sortKey="Wisniewski, Michael" sort="Wisniewski, Michael" uniqKey="Wisniewski M" first="Michael" last="Wisniewski">Michael Wisniewski</name>
<affiliation wicri:level="2">
<nlm:affiliation>United States Department of Agriculture - Agricultural Research Service Kearneysville, WV, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>United States Department of Agriculture - Agricultural Research Service Kearneysville, WV</wicri:regionArea>
<placeName>
<region type="state">Virginie-Occidentale</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Norelli, John" sort="Norelli, John" uniqKey="Norelli J" first="John" last="Norelli">John Norelli</name>
<affiliation wicri:level="2">
<nlm:affiliation>United States Department of Agriculture - Agricultural Research Service Kearneysville, WV, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>United States Department of Agriculture - Agricultural Research Service Kearneysville, WV</wicri:regionArea>
<placeName>
<region type="state">Virginie-Occidentale</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Artlip, Timothy" sort="Artlip, Timothy" uniqKey="Artlip T" first="Timothy" last="Artlip">Timothy Artlip</name>
<affiliation wicri:level="2">
<nlm:affiliation>United States Department of Agriculture - Agricultural Research Service Kearneysville, WV, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>United States Department of Agriculture - Agricultural Research Service Kearneysville, WV</wicri:regionArea>
<placeName>
<region type="state">Virginie-Occidentale</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:25774159</idno>
<idno type="pmid">25774159</idno>
<idno type="doi">10.3389/fpls.2015.00085</idno>
<idno type="pmc">PMC4343015</idno>
<idno type="wicri:Area/Main/Corpus">001D79</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001D79</idno>
<idno type="wicri:Area/Main/Curation">001D79</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001D79</idno>
<idno type="wicri:Area/Main/Exploration">001D79</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Overexpression of a peach CBF gene in apple: a model for understanding the integration of growth, dormancy, and cold hardiness in woody plants.</title>
<author>
<name sortKey="Wisniewski, Michael" sort="Wisniewski, Michael" uniqKey="Wisniewski M" first="Michael" last="Wisniewski">Michael Wisniewski</name>
<affiliation wicri:level="2">
<nlm:affiliation>United States Department of Agriculture - Agricultural Research Service Kearneysville, WV, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>United States Department of Agriculture - Agricultural Research Service Kearneysville, WV</wicri:regionArea>
<placeName>
<region type="state">Virginie-Occidentale</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Norelli, John" sort="Norelli, John" uniqKey="Norelli J" first="John" last="Norelli">John Norelli</name>
<affiliation wicri:level="2">
<nlm:affiliation>United States Department of Agriculture - Agricultural Research Service Kearneysville, WV, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>United States Department of Agriculture - Agricultural Research Service Kearneysville, WV</wicri:regionArea>
<placeName>
<region type="state">Virginie-Occidentale</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Artlip, Timothy" sort="Artlip, Timothy" uniqKey="Artlip T" first="Timothy" last="Artlip">Timothy Artlip</name>
<affiliation wicri:level="2">
<nlm:affiliation>United States Department of Agriculture - Agricultural Research Service Kearneysville, WV, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>United States Department of Agriculture - Agricultural Research Service Kearneysville, WV</wicri:regionArea>
<placeName>
<region type="state">Virginie-Occidentale</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in plant science</title>
<idno type="ISSN">1664-462X</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The timing of cold acclimation and deacclimation, dormancy, and budbreak play an integral role in the life cycle of woody plants. The molecular events that regulate these parameters have been the subject of much study, however, in most studies these events have been investigated independently of each other. Ectopic expression of a peach CBF (PpCBF1) in apple increases the level of both non-acclimated and acclimated freezing tolerance relative to the non-transformed control, and also inhibits growth, induces early bud set and leaf senescence, and delays bud break in the spring. The current study examined differences in the seasonal expression of genes (CBF, DAM, RGL, and EBB) that have been reported to be associated with freezing tolerance, dormancy, growth, and bud break, respectively, in the PpCBF1 T166 transgenic apple line and the non-transformed M.26 control. Results indicated that expression of several of these key genes, including MdDAM, MdRGL, and MdEBB was altered in transgenic T166 trees relative to non-transformed M.26 trees. In particular, several putative MdDAM genes, associated with the dormancy-cycle in other species of woody plants in the Rosaceae, exhibited different patterns of expression in the T166 vs. M.26 trees. Additionally, for the first time a putative APETALA2/Ethylene-responsive transcription factor, originally described in poplar and shown to regulate the timing of bud break, was shown to be associated with the timing of bud break in apple. Since the overexpression of PpCBF1 in apple results in a dramatic alteration in cold acclimation, dormancy, and growth, this transgenic line (T166) may represent a useful model for studying the integration of these seasonal life-cycle parameters. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">25774159</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>03</Month>
<Day>16</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>10</Month>
<Day>01</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">1664-462X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>6</Volume>
<PubDate>
<Year>2015</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in plant science</Title>
<ISOAbbreviation>Front Plant Sci</ISOAbbreviation>
</Journal>
<ArticleTitle>Overexpression of a peach CBF gene in apple: a model for understanding the integration of growth, dormancy, and cold hardiness in woody plants.</ArticleTitle>
<Pagination>
<MedlinePgn>85</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3389/fpls.2015.00085</ELocationID>
<Abstract>
<AbstractText>The timing of cold acclimation and deacclimation, dormancy, and budbreak play an integral role in the life cycle of woody plants. The molecular events that regulate these parameters have been the subject of much study, however, in most studies these events have been investigated independently of each other. Ectopic expression of a peach CBF (PpCBF1) in apple increases the level of both non-acclimated and acclimated freezing tolerance relative to the non-transformed control, and also inhibits growth, induces early bud set and leaf senescence, and delays bud break in the spring. The current study examined differences in the seasonal expression of genes (CBF, DAM, RGL, and EBB) that have been reported to be associated with freezing tolerance, dormancy, growth, and bud break, respectively, in the PpCBF1 T166 transgenic apple line and the non-transformed M.26 control. Results indicated that expression of several of these key genes, including MdDAM, MdRGL, and MdEBB was altered in transgenic T166 trees relative to non-transformed M.26 trees. In particular, several putative MdDAM genes, associated with the dormancy-cycle in other species of woody plants in the Rosaceae, exhibited different patterns of expression in the T166 vs. M.26 trees. Additionally, for the first time a putative APETALA2/Ethylene-responsive transcription factor, originally described in poplar and shown to regulate the timing of bud break, was shown to be associated with the timing of bud break in apple. Since the overexpression of PpCBF1 in apple results in a dramatic alteration in cold acclimation, dormancy, and growth, this transgenic line (T166) may represent a useful model for studying the integration of these seasonal life-cycle parameters. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Wisniewski</LastName>
<ForeName>Michael</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>United States Department of Agriculture - Agricultural Research Service Kearneysville, WV, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Norelli</LastName>
<ForeName>John</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>United States Department of Agriculture - Agricultural Research Service Kearneysville, WV, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Artlip</LastName>
<ForeName>Timothy</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>United States Department of Agriculture - Agricultural Research Service Kearneysville, WV, USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>02</Month>
<Day>27</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Plant Sci</MedlineTA>
<NlmUniqueID>101568200</NlmUniqueID>
<ISSNLinking>1664-462X</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">CBF genes</Keyword>
<Keyword MajorTopicYN="N">DAM genes</Keyword>
<Keyword MajorTopicYN="N">DELLA genes</Keyword>
<Keyword MajorTopicYN="N">EBB genes</Keyword>
<Keyword MajorTopicYN="N">Malus × domestica</Keyword>
<Keyword MajorTopicYN="N">bud break</Keyword>
<Keyword MajorTopicYN="N">freezing tolerance</Keyword>
<Keyword MajorTopicYN="N">fruit trees</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2014</Year>
<Month>12</Month>
<Day>05</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2015</Year>
<Month>02</Month>
<Day>02</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>3</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>3</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>3</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25774159</ArticleId>
<ArticleId IdType="doi">10.3389/fpls.2015.00085</ArticleId>
<ArticleId IdType="pmc">PMC4343015</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Front Plant Sci. 2014 Jun 03;5:247</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24917873</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2011 Jun;62(10):3481-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21378115</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Oct;133(2):910-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14500791</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2010 May;73(1-2):157-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20143130</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1998 Nov;16(4):433-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9881163</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 1999 Mar;17(3):287-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10096298</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Sep;157(1):485-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21795580</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2008 Aug;20(8):2117-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18757556</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2012 Mar;24(3):982-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22408073</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2012 Oct;35(10):1707-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22670814</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2012 Feb;1819(2):86-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21867785</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2009;60(12):3521-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19553369</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(9):e45568</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23029105</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2013 Jun;33(6):654-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23761324</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2006 Jul;29(7):1259-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17080948</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2002 Jan 1;30(1):325-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11752327</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2005 Jan;25(1):109-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15519992</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 Aug;19(8):2370-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17693531</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2014 Jul 8;111(27):10001-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24951507</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2009 Mar;21(3):972-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19270186</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2011 May;233(5):971-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21274560</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2008 Jan;31(1):1-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17971068</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2012 Jan;10(1):105-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21914113</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechniques. 2008 May;44(6):753-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18476828</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2012 Jan;193(1):67-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21899556</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2014 Apr;19(4):231-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24182663</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1990 Oct;2(10):987-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2136629</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2007 May;12(5):217-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17416545</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1998 Apr 3;280(5360):104-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9525853</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2008 Nov 26;9:561</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19036138</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2010 May;73(1-2):169-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20066557</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Res. 2004 Aug 1;64(15):5245-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15289330</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2009;60(4):1085-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19043067</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2006 Jul;29(7):1410-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17080962</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2011 Jul;23(7):2568-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21803937</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1994 Nov 11;22(22):4673-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7984417</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2000 Dec;124(4):1854-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11115899</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2011 Jan;189(1):106-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21039557</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2008 Jul;147(3):1199-211</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18467468</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2011 Aug;16(8):412-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21640632</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1999 Jan 1;27(1):297-300</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9847208</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2007;58(15-16):4047-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18039739</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2011 Jan;9(1):50-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20492548</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Virginie-Occidentale</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Virginie-Occidentale">
<name sortKey="Wisniewski, Michael" sort="Wisniewski, Michael" uniqKey="Wisniewski M" first="Michael" last="Wisniewski">Michael Wisniewski</name>
</region>
<name sortKey="Artlip, Timothy" sort="Artlip, Timothy" uniqKey="Artlip T" first="Timothy" last="Artlip">Timothy Artlip</name>
<name sortKey="Norelli, John" sort="Norelli, John" uniqKey="Norelli J" first="John" last="Norelli">John Norelli</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001C13 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001C13 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:25774159
   |texte=   Overexpression of a peach CBF gene in apple: a model for understanding the integration of growth, dormancy, and cold hardiness in woody plants.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:25774159" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020