Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Quantitative proteomics analysis reveals that S-nitrosoglutathione reductase (GSNOR) and nitric oxide signaling enhance poplar defense against chilling stress.

Identifieur interne : 001B68 ( Main/Exploration ); précédent : 001B67; suivant : 001B69

Quantitative proteomics analysis reveals that S-nitrosoglutathione reductase (GSNOR) and nitric oxide signaling enhance poplar defense against chilling stress.

Auteurs : Tielong Cheng [République populaire de Chine] ; Jinhui Chen [République populaire de Chine] ; Abd Allah Ef [Arabie saoudite] ; Pengkai Wang [République populaire de Chine] ; Guangping Wang [République populaire de Chine] ; Xiangyang Hu [République populaire de Chine] ; Jisen Shi [République populaire de Chine]

Source :

RBID : pubmed:26232921

Descripteurs français

English descriptors

Abstract

MAIN CONCLUSION

NO acts as the essential signal to enhance poplar tolerance to chilling stress via antioxidant enzyme activities and protein S -nitrosylation modification, NO signal is also strictly controlled by S -nitrosoglutathione reductase and nitrate reductase to avoid the over-accumulation of reactive nitrogen species. Poplar (Populus trichocarpa) are fast growing woody plants with both ecological and economic value; however, the mechanisms by which poplar adapts to environmental stress are poorly understood. In this study, we used isobaric tags for relative and absolute quantification proteomic approach to characterize the response of poplar exposed to cold stress. We identified 114 proteins that were differentially expressed in plants exposed to cold stress. In particular, some of the proteins are involved in reactive oxygen species (ROS) and reactive nitrogen species (RNS) metabolism. Further physiological analysis showed that nitric oxide (NO) signaling activated a series of downstream defense responses. We further demonstrated that NO activated antioxidant enzyme activities and S-nitrosoglutathione reductase (GSNOR) activities, which would reduce ROS and RNS toxicity and thereby enhance poplar tolerance to cold stress. Suppressing NO accumulation or GSNOR activity aggravated cold damage to poplar leaves. Moreover, our results showed that RNS can suppress the activities of GSNOR and NO nitrate reductase (NR) by S-nitrosylation to fine-tune the NO signal and modulate ROS levels by modulating the S-nitrosylation of ascorbate peroxidase protein. Hence, our data demonstrate that NO signaling activates multiple pathways that enhance poplar tolerances to cold stress, and that NO signaling is strictly controlled through protein post-translational modification by S-nitrosylation.


DOI: 10.1007/s00425-015-2374-5
PubMed: 26232921


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Quantitative proteomics analysis reveals that S-nitrosoglutathione reductase (GSNOR) and nitric oxide signaling enhance poplar defense against chilling stress.</title>
<author>
<name sortKey="Cheng, Tielong" sort="Cheng, Tielong" uniqKey="Cheng T" first="Tielong" last="Cheng">Tielong Cheng</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Forest Genetics & Biogeography, Ministry of Education, Nanjing Forest University, Nanjing, 210037, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Forest Genetics & Biogeography, Ministry of Education, Nanjing Forest University, Nanjing, 210037</wicri:regionArea>
<wicri:noRegion>210037</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Chen, Jinhui" sort="Chen, Jinhui" uniqKey="Chen J" first="Jinhui" last="Chen">Jinhui Chen</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Forest Genetics & Biogeography, Ministry of Education, Nanjing Forest University, Nanjing, 210037, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Forest Genetics & Biogeography, Ministry of Education, Nanjing Forest University, Nanjing, 210037</wicri:regionArea>
<wicri:noRegion>210037</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ef, Abd Allah" sort="Ef, Abd Allah" uniqKey="Ef A" first="Abd Allah" last="Ef">Abd Allah Ef</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Production, Faculty of Food & Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia.</nlm:affiliation>
<country xml:lang="fr">Arabie saoudite</country>
<wicri:regionArea>Department of Plant Production, Faculty of Food & Agricultural Sciences, King Saud University, Riyadh</wicri:regionArea>
<wicri:noRegion>Riyadh</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wang, Pengkai" sort="Wang, Pengkai" uniqKey="Wang P" first="Pengkai" last="Wang">Pengkai Wang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Forest Genetics & Biogeography, Ministry of Education, Nanjing Forest University, Nanjing, 210037, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Forest Genetics & Biogeography, Ministry of Education, Nanjing Forest University, Nanjing, 210037</wicri:regionArea>
<wicri:noRegion>210037</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wang, Guangping" sort="Wang, Guangping" uniqKey="Wang G" first="Guangping" last="Wang">Guangping Wang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Forest Genetics & Biogeography, Ministry of Education, Nanjing Forest University, Nanjing, 210037, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Forest Genetics & Biogeography, Ministry of Education, Nanjing Forest University, Nanjing, 210037</wicri:regionArea>
<wicri:noRegion>210037</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hu, Xiangyang" sort="Hu, Xiangyang" uniqKey="Hu X" first="Xiangyang" last="Hu">Xiangyang Hu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201, China. huxiangyang@mail.kib.ac.cn.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201</wicri:regionArea>
<wicri:noRegion>650201</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Shi, Jisen" sort="Shi, Jisen" uniqKey="Shi J" first="Jisen" last="Shi">Jisen Shi</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Forest Genetics & Biogeography, Ministry of Education, Nanjing Forest University, Nanjing, 210037, China. jshi@njfu.edu.cn.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Forest Genetics & Biogeography, Ministry of Education, Nanjing Forest University, Nanjing, 210037</wicri:regionArea>
<wicri:noRegion>210037</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:26232921</idno>
<idno type="pmid">26232921</idno>
<idno type="doi">10.1007/s00425-015-2374-5</idno>
<idno type="wicri:Area/Main/Corpus">001B88</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001B88</idno>
<idno type="wicri:Area/Main/Curation">001B88</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001B88</idno>
<idno type="wicri:Area/Main/Exploration">001B88</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Quantitative proteomics analysis reveals that S-nitrosoglutathione reductase (GSNOR) and nitric oxide signaling enhance poplar defense against chilling stress.</title>
<author>
<name sortKey="Cheng, Tielong" sort="Cheng, Tielong" uniqKey="Cheng T" first="Tielong" last="Cheng">Tielong Cheng</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Forest Genetics & Biogeography, Ministry of Education, Nanjing Forest University, Nanjing, 210037, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Forest Genetics & Biogeography, Ministry of Education, Nanjing Forest University, Nanjing, 210037</wicri:regionArea>
<wicri:noRegion>210037</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Chen, Jinhui" sort="Chen, Jinhui" uniqKey="Chen J" first="Jinhui" last="Chen">Jinhui Chen</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Forest Genetics & Biogeography, Ministry of Education, Nanjing Forest University, Nanjing, 210037, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Forest Genetics & Biogeography, Ministry of Education, Nanjing Forest University, Nanjing, 210037</wicri:regionArea>
<wicri:noRegion>210037</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ef, Abd Allah" sort="Ef, Abd Allah" uniqKey="Ef A" first="Abd Allah" last="Ef">Abd Allah Ef</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Production, Faculty of Food & Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia.</nlm:affiliation>
<country xml:lang="fr">Arabie saoudite</country>
<wicri:regionArea>Department of Plant Production, Faculty of Food & Agricultural Sciences, King Saud University, Riyadh</wicri:regionArea>
<wicri:noRegion>Riyadh</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wang, Pengkai" sort="Wang, Pengkai" uniqKey="Wang P" first="Pengkai" last="Wang">Pengkai Wang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Forest Genetics & Biogeography, Ministry of Education, Nanjing Forest University, Nanjing, 210037, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Forest Genetics & Biogeography, Ministry of Education, Nanjing Forest University, Nanjing, 210037</wicri:regionArea>
<wicri:noRegion>210037</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wang, Guangping" sort="Wang, Guangping" uniqKey="Wang G" first="Guangping" last="Wang">Guangping Wang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Forest Genetics & Biogeography, Ministry of Education, Nanjing Forest University, Nanjing, 210037, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Forest Genetics & Biogeography, Ministry of Education, Nanjing Forest University, Nanjing, 210037</wicri:regionArea>
<wicri:noRegion>210037</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hu, Xiangyang" sort="Hu, Xiangyang" uniqKey="Hu X" first="Xiangyang" last="Hu">Xiangyang Hu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201, China. huxiangyang@mail.kib.ac.cn.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201</wicri:regionArea>
<wicri:noRegion>650201</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Shi, Jisen" sort="Shi, Jisen" uniqKey="Shi J" first="Jisen" last="Shi">Jisen Shi</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Forest Genetics & Biogeography, Ministry of Education, Nanjing Forest University, Nanjing, 210037, China. jshi@njfu.edu.cn.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Forest Genetics & Biogeography, Ministry of Education, Nanjing Forest University, Nanjing, 210037</wicri:regionArea>
<wicri:noRegion>210037</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Planta</title>
<idno type="eISSN">1432-2048</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Aldehyde Oxidoreductases (metabolism)</term>
<term>Cold Temperature (MeSH)</term>
<term>Nitric Oxide (physiology)</term>
<term>Populus (enzymology)</term>
<term>Populus (physiology)</term>
<term>Proteomics (MeSH)</term>
<term>Reactive Nitrogen Species (metabolism)</term>
<term>Signal Transduction (physiology)</term>
<term>Stress, Physiological (physiology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Aldehyde oxidoreductases (métabolisme)</term>
<term>Basse température (MeSH)</term>
<term>Espèces réactives de l'azote (métabolisme)</term>
<term>Monoxyde d'azote (physiologie)</term>
<term>Populus (enzymologie)</term>
<term>Populus (physiologie)</term>
<term>Protéomique (MeSH)</term>
<term>Stress physiologique (physiologie)</term>
<term>Transduction du signal (physiologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Aldehyde Oxidoreductases</term>
<term>Reactive Nitrogen Species</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="physiology" xml:lang="en">
<term>Nitric Oxide</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Aldehyde oxidoreductases</term>
<term>Espèces réactives de l'azote</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Monoxyde d'azote</term>
<term>Populus</term>
<term>Stress physiologique</term>
<term>Transduction du signal</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Populus</term>
<term>Signal Transduction</term>
<term>Stress, Physiological</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Cold Temperature</term>
<term>Proteomics</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Basse température</term>
<term>Protéomique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>MAIN CONCLUSION</b>
</p>
<p>NO acts as the essential signal to enhance poplar tolerance to chilling stress via antioxidant enzyme activities and protein S -nitrosylation modification, NO signal is also strictly controlled by S -nitrosoglutathione reductase and nitrate reductase to avoid the over-accumulation of reactive nitrogen species. Poplar (Populus trichocarpa) are fast growing woody plants with both ecological and economic value; however, the mechanisms by which poplar adapts to environmental stress are poorly understood. In this study, we used isobaric tags for relative and absolute quantification proteomic approach to characterize the response of poplar exposed to cold stress. We identified 114 proteins that were differentially expressed in plants exposed to cold stress. In particular, some of the proteins are involved in reactive oxygen species (ROS) and reactive nitrogen species (RNS) metabolism. Further physiological analysis showed that nitric oxide (NO) signaling activated a series of downstream defense responses. We further demonstrated that NO activated antioxidant enzyme activities and S-nitrosoglutathione reductase (GSNOR) activities, which would reduce ROS and RNS toxicity and thereby enhance poplar tolerance to cold stress. Suppressing NO accumulation or GSNOR activity aggravated cold damage to poplar leaves. Moreover, our results showed that RNS can suppress the activities of GSNOR and NO nitrate reductase (NR) by S-nitrosylation to fine-tune the NO signal and modulate ROS levels by modulating the S-nitrosylation of ascorbate peroxidase protein. Hence, our data demonstrate that NO signaling activates multiple pathways that enhance poplar tolerances to cold stress, and that NO signaling is strictly controlled through protein post-translational modification by S-nitrosylation.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">26232921</PMID>
<DateCompleted>
<Year>2016</Year>
<Month>08</Month>
<Day>05</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1432-2048</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>242</Volume>
<Issue>6</Issue>
<PubDate>
<Year>2015</Year>
<Month>Dec</Month>
</PubDate>
</JournalIssue>
<Title>Planta</Title>
<ISOAbbreviation>Planta</ISOAbbreviation>
</Journal>
<ArticleTitle>Quantitative proteomics analysis reveals that S-nitrosoglutathione reductase (GSNOR) and nitric oxide signaling enhance poplar defense against chilling stress.</ArticleTitle>
<Pagination>
<MedlinePgn>1361-90</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00425-015-2374-5</ELocationID>
<Abstract>
<AbstractText Label="MAIN CONCLUSION" NlmCategory="CONCLUSIONS">NO acts as the essential signal to enhance poplar tolerance to chilling stress via antioxidant enzyme activities and protein S -nitrosylation modification, NO signal is also strictly controlled by S -nitrosoglutathione reductase and nitrate reductase to avoid the over-accumulation of reactive nitrogen species. Poplar (Populus trichocarpa) are fast growing woody plants with both ecological and economic value; however, the mechanisms by which poplar adapts to environmental stress are poorly understood. In this study, we used isobaric tags for relative and absolute quantification proteomic approach to characterize the response of poplar exposed to cold stress. We identified 114 proteins that were differentially expressed in plants exposed to cold stress. In particular, some of the proteins are involved in reactive oxygen species (ROS) and reactive nitrogen species (RNS) metabolism. Further physiological analysis showed that nitric oxide (NO) signaling activated a series of downstream defense responses. We further demonstrated that NO activated antioxidant enzyme activities and S-nitrosoglutathione reductase (GSNOR) activities, which would reduce ROS and RNS toxicity and thereby enhance poplar tolerance to cold stress. Suppressing NO accumulation or GSNOR activity aggravated cold damage to poplar leaves. Moreover, our results showed that RNS can suppress the activities of GSNOR and NO nitrate reductase (NR) by S-nitrosylation to fine-tune the NO signal and modulate ROS levels by modulating the S-nitrosylation of ascorbate peroxidase protein. Hence, our data demonstrate that NO signaling activates multiple pathways that enhance poplar tolerances to cold stress, and that NO signaling is strictly controlled through protein post-translational modification by S-nitrosylation.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Cheng</LastName>
<ForeName>Tielong</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>Key Laboratory of Forest Genetics & Biogeography, Ministry of Education, Nanjing Forest University, Nanjing, 210037, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>Jinhui</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Key Laboratory of Forest Genetics & Biogeography, Ministry of Education, Nanjing Forest University, Nanjing, 210037, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ef</LastName>
<ForeName>Abd Allah</ForeName>
<Initials>AA</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Production, Faculty of Food & Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Pengkai</ForeName>
<Initials>P</Initials>
<AffiliationInfo>
<Affiliation>Key Laboratory of Forest Genetics & Biogeography, Ministry of Education, Nanjing Forest University, Nanjing, 210037, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Guangping</ForeName>
<Initials>G</Initials>
<AffiliationInfo>
<Affiliation>Key Laboratory of Forest Genetics & Biogeography, Ministry of Education, Nanjing Forest University, Nanjing, 210037, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hu</LastName>
<ForeName>Xiangyang</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201, China. huxiangyang@mail.kib.ac.cn.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Shi</LastName>
<ForeName>Jisen</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Key Laboratory of Forest Genetics & Biogeography, Ministry of Education, Nanjing Forest University, Nanjing, 210037, China. jshi@njfu.edu.cn.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>08</Month>
<Day>02</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Planta</MedlineTA>
<NlmUniqueID>1250576</NlmUniqueID>
<ISSNLinking>0032-0935</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D026361">Reactive Nitrogen Species</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>31C4KY9ESH</RegistryNumber>
<NameOfSubstance UI="D009569">Nitric Oxide</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.2.-</RegistryNumber>
<NameOfSubstance UI="D000445">Aldehyde Oxidoreductases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.2.1.46</RegistryNumber>
<NameOfSubstance UI="C087006">formaldehyde dehydrogenase, glutathione-independent</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="ErratumIn">
<RefSource>Planta. 2016 Apr;243(4):1081</RefSource>
<PMID Version="1">26979322</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000445" MajorTopicYN="N">Aldehyde Oxidoreductases</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003080" MajorTopicYN="Y">Cold Temperature</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009569" MajorTopicYN="N">Nitric Oxide</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D040901" MajorTopicYN="Y">Proteomics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D026361" MajorTopicYN="N">Reactive Nitrogen Species</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013312" MajorTopicYN="N">Stress, Physiological</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Cold stress</Keyword>
<Keyword MajorTopicYN="N">Nitric oxide</Keyword>
<Keyword MajorTopicYN="N">Poplar</Keyword>
<Keyword MajorTopicYN="N">Proteome</Keyword>
<Keyword MajorTopicYN="N">S-Nitrosoglutathione reductase</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2015</Year>
<Month>04</Month>
<Day>28</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2015</Year>
<Month>07</Month>
<Day>14</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>8</Month>
<Day>3</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>8</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>8</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">26232921</ArticleId>
<ArticleId IdType="doi">10.1007/s00425-015-2374-5</ArticleId>
<ArticleId IdType="pii">10.1007/s00425-015-2374-5</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nature. 2002 Aug 8;418(6898):623-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12167857</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2012 Aug 15;53(4):710-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22683602</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2002 May;53(372):1237-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11997372</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Jul;156(3):1410-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21562334</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2013 Aug;25(8):2907-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23933884</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2006;57(8):1785-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16595575</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2010 Oct 15;167(15):1298-306</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20627450</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2010 Apr;138(4):360-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19912563</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2011 Mar;233(3):583-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21120520</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2002 Oct;5(5):388-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12183176</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2014 Aug;26(8):3326-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25122152</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Proteome Res. 2014 May 2;13(5):2495-510</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24689873</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2008 Mar;20(3):786-802</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18326829</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2009 Jan 15;46(2):119-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18977293</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011;6(6):e20714</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21674063</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2007 Jun;10(3):290-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17468037</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Proteome Res. 2011 Oct 7;10(10):4349-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21846115</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2011 Dec;31(12):1309-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21949013</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biosci. 2004 Dec;29(4):449-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15625401</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 May 23;103(21):8281-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16702557</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2001 Mar 22;410(6827):490-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11260719</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2014 Oct 2;56(1):153-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25201412</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Sci. 2012 Jun;188-189:48-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22525244</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2001 Jun;112(2):152-166</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11454221</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2010 Oct;5(10):1318-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20930557</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Jan;155(1):2-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21205630</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 May 31;102(22):8054-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15911759</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2014 Jun;202(4):1335-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24580101</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2011 Mar;62(6):1803-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21172815</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2011 Aug;14(4):358-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21454121</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Sep 15;313(5793):1596-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16973872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2014 Nov 11;5:5401</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25384398</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2002 Mar 27;515(1-3):20-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11943187</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2013 Feb 01;4:9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23378846</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protoplasma. 2003 May;221(1-2):137-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12768351</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Dev Cell. 2015 Feb 9;32(3):278-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25669882</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Oct;151(2):755-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19710235</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteomics. 2011 Feb;11(4):756-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21246733</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Res. 2012 May;22(5):915-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22349459</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2008 Jun;6(5):486-503</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18384508</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2005 Jan;220(3):414-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15349781</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chromatogr. 1982 Dec 10;233:313-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7161344</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2008 May;31(5):622-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18034772</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1996 Oct;32(1-2):275-302</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8980483</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Proteomics. 2009 Apr 13;72(3):283-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19303952</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2004 Sep 24;305(5692):1968-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15448272</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2011;2:303</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21556057</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2012 Feb;1819(2):129-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21708299</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 Jan;143(1):291-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17098847</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1976 May 7;72:248-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">942051</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2001 Apr 1;29(7):1524-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11266554</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2004 Jan;55(395):205-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14673026</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2012 Jun;24(6):2578-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22706288</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2014 Jun;202(4):1142-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24611485</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2009 Feb;50(2):265-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19112080</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2004 May;55(3):399-416</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15604689</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2008 Nov;49(11):1711-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18801763</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2014 Sep 23;111(38):13697-702</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25225392</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Integr Plant Biol. 2008 Oct;50(10):1187-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19017106</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Arabie saoudite</li>
<li>République populaire de Chine</li>
</country>
</list>
<tree>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Cheng, Tielong" sort="Cheng, Tielong" uniqKey="Cheng T" first="Tielong" last="Cheng">Tielong Cheng</name>
</noRegion>
<name sortKey="Chen, Jinhui" sort="Chen, Jinhui" uniqKey="Chen J" first="Jinhui" last="Chen">Jinhui Chen</name>
<name sortKey="Hu, Xiangyang" sort="Hu, Xiangyang" uniqKey="Hu X" first="Xiangyang" last="Hu">Xiangyang Hu</name>
<name sortKey="Shi, Jisen" sort="Shi, Jisen" uniqKey="Shi J" first="Jisen" last="Shi">Jisen Shi</name>
<name sortKey="Wang, Guangping" sort="Wang, Guangping" uniqKey="Wang G" first="Guangping" last="Wang">Guangping Wang</name>
<name sortKey="Wang, Pengkai" sort="Wang, Pengkai" uniqKey="Wang P" first="Pengkai" last="Wang">Pengkai Wang</name>
</country>
<country name="Arabie saoudite">
<noRegion>
<name sortKey="Ef, Abd Allah" sort="Ef, Abd Allah" uniqKey="Ef A" first="Abd Allah" last="Ef">Abd Allah Ef</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001B68 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001B68 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:26232921
   |texte=   Quantitative proteomics analysis reveals that S-nitrosoglutathione reductase (GSNOR) and nitric oxide signaling enhance poplar defense against chilling stress.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:26232921" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020