Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The mechanism of xylans removal during hydrothermal pretreatment of poplar fibers investigated by immunogold labeling.

Identifieur interne : 001B00 ( Main/Exploration ); précédent : 001A99; suivant : 001B01

The mechanism of xylans removal during hydrothermal pretreatment of poplar fibers investigated by immunogold labeling.

Auteurs : Jing Ma [République populaire de Chine] ; Zhe Ji ; Jia C. Chen ; Xia Zhou ; Yoon S. Kim ; Feng Xu

Source :

RBID : pubmed:25926363

Descripteurs français

English descriptors

Abstract

MAIN CONCLUSION

Hydrothermal pretreatment initially removed the lignin-free xylan from the middle layer of secondary wall, followed by the lignin-bound xylan, but the cellulose-bound xylan was seldom removed by this pretreatment. An in-depth understanding of the mechanism of xylan removal during hydrothermal pretreatment (HTP) of wood is critical for cost-effective conversion of lignocellulosic biomass to biofuels. Several studies demonstrated the kinetics and mechanism of xylan removal during HTP on molecular scale, but the dissolution mechanism of xylan during HTP remains unclear at ultra-structural level. Our study investigated changes in the micro-distribution of xylan in poplar fiber cell walls during HTP by transmission electron microscopy (TEM) in combination with immunogold labeling. The study revealed that HTP caused greater decline in the density of xylan labeling in the S2 layer of fiber wall than in the S1 layer. There was a greater loss in the density of xylan labeling during HTP in the delignified and enzymatically treated fibers compared to untreated fibers. We propose that in the initial stages of HTP lignin-free xylan in the S2 layer was more readily hydrolyzed than in the S1 layer by hydronium ions. With increasing pretreatment time, the xylan covalently bound to lignin was also removed from the S2 layer due to the dissolution of lignin. The xylan tightly bound to cellulose was seldom removed during HTP, but was hydrolyzed in subsequent enzymatic treatment. This TEM-immunolabeling investigation reveals the manner in which different xylan fractions are removed from fiber cell wall during HTP, and we expect the information to be helpful in developing processes tailored for more effective conversion of cellulosic biomass into fermentable sugars.


DOI: 10.1007/s00425-015-2313-5
PubMed: 25926363


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The mechanism of xylans removal during hydrothermal pretreatment of poplar fibers investigated by immunogold labeling.</title>
<author>
<name sortKey="Ma, Jing" sort="Ma, Jing" uniqKey="Ma J" first="Jing" last="Ma">Jing Ma</name>
<affiliation wicri:level="1">
<nlm:affiliation>Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083</wicri:regionArea>
<wicri:noRegion>100083</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ji, Zhe" sort="Ji, Zhe" uniqKey="Ji Z" first="Zhe" last="Ji">Zhe Ji</name>
</author>
<author>
<name sortKey="Chen, Jia C" sort="Chen, Jia C" uniqKey="Chen J" first="Jia C" last="Chen">Jia C. Chen</name>
</author>
<author>
<name sortKey="Zhou, Xia" sort="Zhou, Xia" uniqKey="Zhou X" first="Xia" last="Zhou">Xia Zhou</name>
</author>
<author>
<name sortKey="Kim, Yoon S" sort="Kim, Yoon S" uniqKey="Kim Y" first="Yoon S" last="Kim">Yoon S. Kim</name>
</author>
<author>
<name sortKey="Xu, Feng" sort="Xu, Feng" uniqKey="Xu F" first="Feng" last="Xu">Feng Xu</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:25926363</idno>
<idno type="pmid">25926363</idno>
<idno type="doi">10.1007/s00425-015-2313-5</idno>
<idno type="wicri:Area/Main/Corpus">001D14</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001D14</idno>
<idno type="wicri:Area/Main/Curation">001D14</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001D14</idno>
<idno type="wicri:Area/Main/Exploration">001D14</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The mechanism of xylans removal during hydrothermal pretreatment of poplar fibers investigated by immunogold labeling.</title>
<author>
<name sortKey="Ma, Jing" sort="Ma, Jing" uniqKey="Ma J" first="Jing" last="Ma">Jing Ma</name>
<affiliation wicri:level="1">
<nlm:affiliation>Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083</wicri:regionArea>
<wicri:noRegion>100083</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ji, Zhe" sort="Ji, Zhe" uniqKey="Ji Z" first="Zhe" last="Ji">Zhe Ji</name>
</author>
<author>
<name sortKey="Chen, Jia C" sort="Chen, Jia C" uniqKey="Chen J" first="Jia C" last="Chen">Jia C. Chen</name>
</author>
<author>
<name sortKey="Zhou, Xia" sort="Zhou, Xia" uniqKey="Zhou X" first="Xia" last="Zhou">Xia Zhou</name>
</author>
<author>
<name sortKey="Kim, Yoon S" sort="Kim, Yoon S" uniqKey="Kim Y" first="Yoon S" last="Kim">Yoon S. Kim</name>
</author>
<author>
<name sortKey="Xu, Feng" sort="Xu, Feng" uniqKey="Xu F" first="Feng" last="Xu">Feng Xu</name>
</author>
</analytic>
<series>
<title level="j">Planta</title>
<idno type="eISSN">1432-2048</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Cell Wall (drug effects)</term>
<term>Cell Wall (metabolism)</term>
<term>Immunohistochemistry (methods)</term>
<term>Populus (anatomy & histology)</term>
<term>Populus (drug effects)</term>
<term>Populus (physiology)</term>
<term>Temperature (MeSH)</term>
<term>Water (pharmacology)</term>
<term>Xylans (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Eau (pharmacologie)</term>
<term>Immunohistochimie (méthodes)</term>
<term>Paroi cellulaire (effets des médicaments et des substances chimiques)</term>
<term>Paroi cellulaire (métabolisme)</term>
<term>Populus (anatomie et histologie)</term>
<term>Populus (effets des médicaments et des substances chimiques)</term>
<term>Populus (physiologie)</term>
<term>Température (MeSH)</term>
<term>Xylanes (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Xylans</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Water</term>
</keywords>
<keywords scheme="MESH" qualifier="anatomie et histologie" xml:lang="fr">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="anatomy & histology" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Cell Wall</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Paroi cellulaire</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Cell Wall</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Immunohistochemistry</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Paroi cellulaire</term>
<term>Xylanes</term>
</keywords>
<keywords scheme="MESH" qualifier="méthodes" xml:lang="fr">
<term>Immunohistochimie</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Eau</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Temperature</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Température</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>MAIN CONCLUSION</b>
</p>
<p>Hydrothermal pretreatment initially removed the lignin-free xylan from the middle layer of secondary wall, followed by the lignin-bound xylan, but the cellulose-bound xylan was seldom removed by this pretreatment. An in-depth understanding of the mechanism of xylan removal during hydrothermal pretreatment (HTP) of wood is critical for cost-effective conversion of lignocellulosic biomass to biofuels. Several studies demonstrated the kinetics and mechanism of xylan removal during HTP on molecular scale, but the dissolution mechanism of xylan during HTP remains unclear at ultra-structural level. Our study investigated changes in the micro-distribution of xylan in poplar fiber cell walls during HTP by transmission electron microscopy (TEM) in combination with immunogold labeling. The study revealed that HTP caused greater decline in the density of xylan labeling in the S2 layer of fiber wall than in the S1 layer. There was a greater loss in the density of xylan labeling during HTP in the delignified and enzymatically treated fibers compared to untreated fibers. We propose that in the initial stages of HTP lignin-free xylan in the S2 layer was more readily hydrolyzed than in the S1 layer by hydronium ions. With increasing pretreatment time, the xylan covalently bound to lignin was also removed from the S2 layer due to the dissolution of lignin. The xylan tightly bound to cellulose was seldom removed during HTP, but was hydrolyzed in subsequent enzymatic treatment. This TEM-immunolabeling investigation reveals the manner in which different xylan fractions are removed from fiber cell wall during HTP, and we expect the information to be helpful in developing processes tailored for more effective conversion of cellulosic biomass into fermentable sugars.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">25926363</PMID>
<DateCompleted>
<Year>2016</Year>
<Month>04</Month>
<Day>14</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1432-2048</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>242</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2015</Year>
<Month>Jul</Month>
</PubDate>
</JournalIssue>
<Title>Planta</Title>
<ISOAbbreviation>Planta</ISOAbbreviation>
</Journal>
<ArticleTitle>The mechanism of xylans removal during hydrothermal pretreatment of poplar fibers investigated by immunogold labeling.</ArticleTitle>
<Pagination>
<MedlinePgn>327-37</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00425-015-2313-5</ELocationID>
<Abstract>
<AbstractText Label="MAIN CONCLUSION" NlmCategory="CONCLUSIONS">Hydrothermal pretreatment initially removed the lignin-free xylan from the middle layer of secondary wall, followed by the lignin-bound xylan, but the cellulose-bound xylan was seldom removed by this pretreatment. An in-depth understanding of the mechanism of xylan removal during hydrothermal pretreatment (HTP) of wood is critical for cost-effective conversion of lignocellulosic biomass to biofuels. Several studies demonstrated the kinetics and mechanism of xylan removal during HTP on molecular scale, but the dissolution mechanism of xylan during HTP remains unclear at ultra-structural level. Our study investigated changes in the micro-distribution of xylan in poplar fiber cell walls during HTP by transmission electron microscopy (TEM) in combination with immunogold labeling. The study revealed that HTP caused greater decline in the density of xylan labeling in the S2 layer of fiber wall than in the S1 layer. There was a greater loss in the density of xylan labeling during HTP in the delignified and enzymatically treated fibers compared to untreated fibers. We propose that in the initial stages of HTP lignin-free xylan in the S2 layer was more readily hydrolyzed than in the S1 layer by hydronium ions. With increasing pretreatment time, the xylan covalently bound to lignin was also removed from the S2 layer due to the dissolution of lignin. The xylan tightly bound to cellulose was seldom removed during HTP, but was hydrolyzed in subsequent enzymatic treatment. This TEM-immunolabeling investigation reveals the manner in which different xylan fractions are removed from fiber cell wall during HTP, and we expect the information to be helpful in developing processes tailored for more effective conversion of cellulosic biomass into fermentable sugars.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Ma</LastName>
<ForeName>Jing</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ji</LastName>
<ForeName>Zhe</ForeName>
<Initials>Z</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>Jia C</ForeName>
<Initials>JC</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zhou</LastName>
<ForeName>Xia</ForeName>
<Initials>X</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Kim</LastName>
<ForeName>Yoon S</ForeName>
<Initials>YS</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Xu</LastName>
<ForeName>Feng</ForeName>
<Initials>F</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>04</Month>
<Day>30</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Planta</MedlineTA>
<NlmUniqueID>1250576</NlmUniqueID>
<ISSNLinking>0032-0935</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014990">Xylans</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>059QF0KO0R</RegistryNumber>
<NameOfSubstance UI="D014867">Water</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D002473" MajorTopicYN="N">Cell Wall</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007150" MajorTopicYN="N">Immunohistochemistry</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000033" MajorTopicYN="N">anatomy & histology</QualifierName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013696" MajorTopicYN="Y">Temperature</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014867" MajorTopicYN="N">Water</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014990" MajorTopicYN="N">Xylans</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2015</Year>
<Month>03</Month>
<Day>18</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2015</Year>
<Month>04</Month>
<Day>21</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>5</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>5</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>4</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25926363</ArticleId>
<ArticleId IdType="doi">10.1007/s00425-015-2313-5</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Bioresour Technol. 2010 Oct;101(20):7812-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20541933</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Chem Biomol Eng. 2011;2:121-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22432613</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2013 Jun;138:156-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23612175</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2012 Jun;235(6):1315-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22207424</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ChemSusChem. 2013 Jan;6(1):110-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23180649</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Biotechnol. 2014 Jun;27:38-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24863895</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2011 Jun;233(6):1097-110</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21298285</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Bioeng. 2004 Apr 5;86(1):88-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15007845</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2011 Feb;102(3):3498-503</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21146404</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Biochem Biotechnol. 2008 Mar;147(1-3):119-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18401758</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Agric Food Chem. 2014 Mar 27;:null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24564197</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2014 May 16;344(6185):1246843</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24833396</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2010 Dec;101(24):9645-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20709531</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Adv. 2012 Jul-Aug;30(4):785-810</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22306164</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Adv. 2010 Sep-Oct;28(5):563-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20493246</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Bioeng. 2006 Jul 5;94(4):611-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16673419</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Biofuels. 2013 Jan 28;6(1):15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23356640</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2012 Nov 23;338(6110):1055-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23180856</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Bioeng. 2009 Apr 15;102(6):1537-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19161247</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Chen, Jia C" sort="Chen, Jia C" uniqKey="Chen J" first="Jia C" last="Chen">Jia C. Chen</name>
<name sortKey="Ji, Zhe" sort="Ji, Zhe" uniqKey="Ji Z" first="Zhe" last="Ji">Zhe Ji</name>
<name sortKey="Kim, Yoon S" sort="Kim, Yoon S" uniqKey="Kim Y" first="Yoon S" last="Kim">Yoon S. Kim</name>
<name sortKey="Xu, Feng" sort="Xu, Feng" uniqKey="Xu F" first="Feng" last="Xu">Feng Xu</name>
<name sortKey="Zhou, Xia" sort="Zhou, Xia" uniqKey="Zhou X" first="Xia" last="Zhou">Xia Zhou</name>
</noCountry>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Ma, Jing" sort="Ma, Jing" uniqKey="Ma J" first="Jing" last="Ma">Jing Ma</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001B00 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001B00 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:25926363
   |texte=   The mechanism of xylans removal during hydrothermal pretreatment of poplar fibers investigated by immunogold labeling.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:25926363" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020