Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Transcriptional transitions in Nicotiana benthamiana leaves upon induction of oil synthesis by WRINKLED1 homologs from diverse species and tissues.

Identifieur interne : 001A88 ( Main/Exploration ); précédent : 001A87; suivant : 001A89

Transcriptional transitions in Nicotiana benthamiana leaves upon induction of oil synthesis by WRINKLED1 homologs from diverse species and tissues.

Auteurs : Sa Grimberg [Suède] ; Anders S. Carlsson [Suède] ; Salla Marttila [Suède] ; Rishikesh Bhalerao [Suède] ; Per Hofvander [Suède]

Source :

RBID : pubmed:26253704

Descripteurs français

English descriptors

Abstract

BACKGROUND

Carbon accumulation and remobilization are essential mechanisms in plants to ensure energy transfer between plant tissues with different functions or metabolic needs and to support new generations. Knowledge about the regulation of carbon allocation into oil (triacylglycerol) in plant storage tissue can be of great economic and environmental importance for developing new high-yielding oil crops. Here, the effect on global gene expression as well as on physiological changes in leaves transiently expressing five homologs of the transcription factor WRINKLED1 (WRI1) originating from diverse species and tissues; Arabidopsis thaliana and potato (Solanum tuberosum) seed embryo, poplar (Populus trichocarpa) stem cambium, oat (Avena sativa) grain endosperm, and nutsedge (Cyperus esculentus) tuber parenchyma, were studied by agroinfiltration in Nicotiana benthamiana.

RESULTS

All WRI1 homologs induced oil accumulation when expressed in leaf tissue. Transcriptome sequencing revealed that all homologs induced the same general patterns with a drastic shift in gene expression profiles of leaves from that of a typical source tissue to a source-limited sink-like tissue: Transcripts encoding enzymes for plastid uptake and metabolism of phosphoenolpyruvate, fatty acid and oil biosynthesis were up-regulated, as were also transcripts encoding starch degradation. Transcripts encoding enzymes in photosynthesis and starch synthesis were instead down-regulated. Moreover, transcripts representing fatty acid degradation were up-regulated indicating that fatty acids might be degraded to feed the increased need to channel carbons into fatty acid synthesis creating a futile cycle. RT-qPCR analysis of leaves expressing Arabidopsis WRI1 showed the temporal trends of transcripts selected as 'markers' for key metabolic pathways one to five days after agroinfiltration. Chlorophyll fluorescence measurements of leaves expressing Arabidopsis WRI1 showed a significant decrease in photosynthesis, even though effect on starch content could not be observed.

CONCLUSIONS

This data gives for the first time a general view on the transcriptional transitions in leaf tissue upon induction of oil synthesis by WRI1. This yields important information about what effects WRI1 may exert on global gene expression during seed and embryo development. The results suggest why high oil content in leaf tissue cannot be achieved by solely transcriptional activation by WRI1, which can be essential knowledge in the development of new high-yielding oil crops.


DOI: 10.1186/s12870-015-0579-1
PubMed: 26253704
PubMed Central: PMC4528408


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Transcriptional transitions in Nicotiana benthamiana leaves upon induction of oil synthesis by WRINKLED1 homologs from diverse species and tissues.</title>
<author>
<name sortKey="Grimberg, Sa" sort="Grimberg, Sa" uniqKey="Grimberg " first=" Sa" last="Grimberg"> Sa Grimberg</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Breeding, Swedish University of Agricultural Sciences, Växtskyddsvägen 1, P.O. Box 101, SE-23053, Alnarp, Sweden. Asa.Grimberg@slu.se.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Plant Breeding, Swedish University of Agricultural Sciences, Växtskyddsvägen 1, P.O. Box 101, SE-23053, Alnarp</wicri:regionArea>
<wicri:noRegion>Alnarp</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Carlsson, Anders S" sort="Carlsson, Anders S" uniqKey="Carlsson A" first="Anders S" last="Carlsson">Anders S. Carlsson</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Breeding, Swedish University of Agricultural Sciences, Växtskyddsvägen 1, P.O. Box 101, SE-23053, Alnarp, Sweden. Anders.Carlsson@slu.se.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Plant Breeding, Swedish University of Agricultural Sciences, Växtskyddsvägen 1, P.O. Box 101, SE-23053, Alnarp</wicri:regionArea>
<wicri:noRegion>Alnarp</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Marttila, Salla" sort="Marttila, Salla" uniqKey="Marttila S" first="Salla" last="Marttila">Salla Marttila</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden. Salla.Marttila@slu.se.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp</wicri:regionArea>
<wicri:noRegion>Alnarp</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Bhalerao, Rishikesh" sort="Bhalerao, Rishikesh" uniqKey="Bhalerao R" first="Rishikesh" last="Bhalerao">Rishikesh Bhalerao</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Umeå, Sweden. Rishi.Bhalerao@slu.se.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Umeå</wicri:regionArea>
<wicri:noRegion>Umeå</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hofvander, Per" sort="Hofvander, Per" uniqKey="Hofvander P" first="Per" last="Hofvander">Per Hofvander</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Breeding, Swedish University of Agricultural Sciences, Växtskyddsvägen 1, P.O. Box 101, SE-23053, Alnarp, Sweden. Per.Hofvander@slu.se.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Plant Breeding, Swedish University of Agricultural Sciences, Växtskyddsvägen 1, P.O. Box 101, SE-23053, Alnarp</wicri:regionArea>
<wicri:noRegion>Alnarp</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:26253704</idno>
<idno type="pmid">26253704</idno>
<idno type="doi">10.1186/s12870-015-0579-1</idno>
<idno type="pmc">PMC4528408</idno>
<idno type="wicri:Area/Main/Corpus">001B76</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001B76</idno>
<idno type="wicri:Area/Main/Curation">001B76</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001B76</idno>
<idno type="wicri:Area/Main/Exploration">001B76</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Transcriptional transitions in Nicotiana benthamiana leaves upon induction of oil synthesis by WRINKLED1 homologs from diverse species and tissues.</title>
<author>
<name sortKey="Grimberg, Sa" sort="Grimberg, Sa" uniqKey="Grimberg " first=" Sa" last="Grimberg"> Sa Grimberg</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Breeding, Swedish University of Agricultural Sciences, Växtskyddsvägen 1, P.O. Box 101, SE-23053, Alnarp, Sweden. Asa.Grimberg@slu.se.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Plant Breeding, Swedish University of Agricultural Sciences, Växtskyddsvägen 1, P.O. Box 101, SE-23053, Alnarp</wicri:regionArea>
<wicri:noRegion>Alnarp</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Carlsson, Anders S" sort="Carlsson, Anders S" uniqKey="Carlsson A" first="Anders S" last="Carlsson">Anders S. Carlsson</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Breeding, Swedish University of Agricultural Sciences, Växtskyddsvägen 1, P.O. Box 101, SE-23053, Alnarp, Sweden. Anders.Carlsson@slu.se.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Plant Breeding, Swedish University of Agricultural Sciences, Växtskyddsvägen 1, P.O. Box 101, SE-23053, Alnarp</wicri:regionArea>
<wicri:noRegion>Alnarp</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Marttila, Salla" sort="Marttila, Salla" uniqKey="Marttila S" first="Salla" last="Marttila">Salla Marttila</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden. Salla.Marttila@slu.se.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp</wicri:regionArea>
<wicri:noRegion>Alnarp</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Bhalerao, Rishikesh" sort="Bhalerao, Rishikesh" uniqKey="Bhalerao R" first="Rishikesh" last="Bhalerao">Rishikesh Bhalerao</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Umeå, Sweden. Rishi.Bhalerao@slu.se.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Umeå</wicri:regionArea>
<wicri:noRegion>Umeå</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hofvander, Per" sort="Hofvander, Per" uniqKey="Hofvander P" first="Per" last="Hofvander">Per Hofvander</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Breeding, Swedish University of Agricultural Sciences, Växtskyddsvägen 1, P.O. Box 101, SE-23053, Alnarp, Sweden. Per.Hofvander@slu.se.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Plant Breeding, Swedish University of Agricultural Sciences, Växtskyddsvägen 1, P.O. Box 101, SE-23053, Alnarp</wicri:regionArea>
<wicri:noRegion>Alnarp</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">BMC plant biology</title>
<idno type="eISSN">1471-2229</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Arabidopsis Proteins (genetics)</term>
<term>Arabidopsis Proteins (metabolism)</term>
<term>Avena (genetics)</term>
<term>Avena (metabolism)</term>
<term>Carbohydrate Metabolism (MeSH)</term>
<term>Cyperus (genetics)</term>
<term>Cyperus (metabolism)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Plant Leaves (genetics)</term>
<term>Plant Leaves (metabolism)</term>
<term>Plants, Genetically Modified (genetics)</term>
<term>Plants, Genetically Modified (metabolism)</term>
<term>Populus (genetics)</term>
<term>Populus (metabolism)</term>
<term>Real-Time Polymerase Chain Reaction (MeSH)</term>
<term>Solanum tuberosum (genetics)</term>
<term>Solanum tuberosum (metabolism)</term>
<term>Tobacco (genetics)</term>
<term>Tobacco (metabolism)</term>
<term>Transcription Factors (genetics)</term>
<term>Transcription Factors (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Avena (génétique)</term>
<term>Avena (métabolisme)</term>
<term>Cyperus (génétique)</term>
<term>Cyperus (métabolisme)</term>
<term>Facteurs de transcription (génétique)</term>
<term>Facteurs de transcription (métabolisme)</term>
<term>Feuilles de plante (génétique)</term>
<term>Feuilles de plante (métabolisme)</term>
<term>Métabolisme glucidique (MeSH)</term>
<term>Populus (génétique)</term>
<term>Populus (métabolisme)</term>
<term>Protéines d'Arabidopsis (génétique)</term>
<term>Protéines d'Arabidopsis (métabolisme)</term>
<term>Réaction de polymérisation en chaine en temps réel (MeSH)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Solanum tuberosum (génétique)</term>
<term>Solanum tuberosum (métabolisme)</term>
<term>Tabac (génétique)</term>
<term>Tabac (métabolisme)</term>
<term>Végétaux génétiquement modifiés (génétique)</term>
<term>Végétaux génétiquement modifiés (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Arabidopsis Proteins</term>
<term>Transcription Factors</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Arabidopsis Proteins</term>
<term>Transcription Factors</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Avena</term>
<term>Cyperus</term>
<term>Plant Leaves</term>
<term>Plants, Genetically Modified</term>
<term>Populus</term>
<term>Solanum tuberosum</term>
<term>Tobacco</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Avena</term>
<term>Cyperus</term>
<term>Facteurs de transcription</term>
<term>Feuilles de plante</term>
<term>Populus</term>
<term>Protéines d'Arabidopsis</term>
<term>Solanum tuberosum</term>
<term>Tabac</term>
<term>Végétaux génétiquement modifiés</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Avena</term>
<term>Cyperus</term>
<term>Plant Leaves</term>
<term>Plants, Genetically Modified</term>
<term>Populus</term>
<term>Solanum tuberosum</term>
<term>Tobacco</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Avena</term>
<term>Cyperus</term>
<term>Facteurs de transcription</term>
<term>Feuilles de plante</term>
<term>Populus</term>
<term>Protéines d'Arabidopsis</term>
<term>Solanum tuberosum</term>
<term>Tabac</term>
<term>Végétaux génétiquement modifiés</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Carbohydrate Metabolism</term>
<term>Gene Expression Regulation, Plant</term>
<term>Real-Time Polymerase Chain Reaction</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Métabolisme glucidique</term>
<term>Réaction de polymérisation en chaine en temps réel</term>
<term>Régulation de l'expression des gènes végétaux</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>Carbon accumulation and remobilization are essential mechanisms in plants to ensure energy transfer between plant tissues with different functions or metabolic needs and to support new generations. Knowledge about the regulation of carbon allocation into oil (triacylglycerol) in plant storage tissue can be of great economic and environmental importance for developing new high-yielding oil crops. Here, the effect on global gene expression as well as on physiological changes in leaves transiently expressing five homologs of the transcription factor WRINKLED1 (WRI1) originating from diverse species and tissues; Arabidopsis thaliana and potato (Solanum tuberosum) seed embryo, poplar (Populus trichocarpa) stem cambium, oat (Avena sativa) grain endosperm, and nutsedge (Cyperus esculentus) tuber parenchyma, were studied by agroinfiltration in Nicotiana benthamiana.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>All WRI1 homologs induced oil accumulation when expressed in leaf tissue. Transcriptome sequencing revealed that all homologs induced the same general patterns with a drastic shift in gene expression profiles of leaves from that of a typical source tissue to a source-limited sink-like tissue: Transcripts encoding enzymes for plastid uptake and metabolism of phosphoenolpyruvate, fatty acid and oil biosynthesis were up-regulated, as were also transcripts encoding starch degradation. Transcripts encoding enzymes in photosynthesis and starch synthesis were instead down-regulated. Moreover, transcripts representing fatty acid degradation were up-regulated indicating that fatty acids might be degraded to feed the increased need to channel carbons into fatty acid synthesis creating a futile cycle. RT-qPCR analysis of leaves expressing Arabidopsis WRI1 showed the temporal trends of transcripts selected as 'markers' for key metabolic pathways one to five days after agroinfiltration. Chlorophyll fluorescence measurements of leaves expressing Arabidopsis WRI1 showed a significant decrease in photosynthesis, even though effect on starch content could not be observed.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>This data gives for the first time a general view on the transcriptional transitions in leaf tissue upon induction of oil synthesis by WRI1. This yields important information about what effects WRI1 may exert on global gene expression during seed and embryo development. The results suggest why high oil content in leaf tissue cannot be achieved by solely transcriptional activation by WRI1, which can be essential knowledge in the development of new high-yielding oil crops.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">26253704</PMID>
<DateCompleted>
<Year>2016</Year>
<Month>04</Month>
<Day>06</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1471-2229</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>15</Volume>
<PubDate>
<Year>2015</Year>
<Month>Aug</Month>
<Day>08</Day>
</PubDate>
</JournalIssue>
<Title>BMC plant biology</Title>
<ISOAbbreviation>BMC Plant Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>Transcriptional transitions in Nicotiana benthamiana leaves upon induction of oil synthesis by WRINKLED1 homologs from diverse species and tissues.</ArticleTitle>
<Pagination>
<MedlinePgn>192</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/s12870-015-0579-1</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Carbon accumulation and remobilization are essential mechanisms in plants to ensure energy transfer between plant tissues with different functions or metabolic needs and to support new generations. Knowledge about the regulation of carbon allocation into oil (triacylglycerol) in plant storage tissue can be of great economic and environmental importance for developing new high-yielding oil crops. Here, the effect on global gene expression as well as on physiological changes in leaves transiently expressing five homologs of the transcription factor WRINKLED1 (WRI1) originating from diverse species and tissues; Arabidopsis thaliana and potato (Solanum tuberosum) seed embryo, poplar (Populus trichocarpa) stem cambium, oat (Avena sativa) grain endosperm, and nutsedge (Cyperus esculentus) tuber parenchyma, were studied by agroinfiltration in Nicotiana benthamiana.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">All WRI1 homologs induced oil accumulation when expressed in leaf tissue. Transcriptome sequencing revealed that all homologs induced the same general patterns with a drastic shift in gene expression profiles of leaves from that of a typical source tissue to a source-limited sink-like tissue: Transcripts encoding enzymes for plastid uptake and metabolism of phosphoenolpyruvate, fatty acid and oil biosynthesis were up-regulated, as were also transcripts encoding starch degradation. Transcripts encoding enzymes in photosynthesis and starch synthesis were instead down-regulated. Moreover, transcripts representing fatty acid degradation were up-regulated indicating that fatty acids might be degraded to feed the increased need to channel carbons into fatty acid synthesis creating a futile cycle. RT-qPCR analysis of leaves expressing Arabidopsis WRI1 showed the temporal trends of transcripts selected as 'markers' for key metabolic pathways one to five days after agroinfiltration. Chlorophyll fluorescence measurements of leaves expressing Arabidopsis WRI1 showed a significant decrease in photosynthesis, even though effect on starch content could not be observed.</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">This data gives for the first time a general view on the transcriptional transitions in leaf tissue upon induction of oil synthesis by WRI1. This yields important information about what effects WRI1 may exert on global gene expression during seed and embryo development. The results suggest why high oil content in leaf tissue cannot be achieved by solely transcriptional activation by WRI1, which can be essential knowledge in the development of new high-yielding oil crops.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Grimberg</LastName>
<ForeName>Åsa</ForeName>
<Initials>Å</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Breeding, Swedish University of Agricultural Sciences, Växtskyddsvägen 1, P.O. Box 101, SE-23053, Alnarp, Sweden. Asa.Grimberg@slu.se.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Carlsson</LastName>
<ForeName>Anders S</ForeName>
<Initials>AS</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Breeding, Swedish University of Agricultural Sciences, Växtskyddsvägen 1, P.O. Box 101, SE-23053, Alnarp, Sweden. Anders.Carlsson@slu.se.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Marttila</LastName>
<ForeName>Salla</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Sweden. Salla.Marttila@slu.se.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bhalerao</LastName>
<ForeName>Rishikesh</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Umeå, Sweden. Rishi.Bhalerao@slu.se.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hofvander</LastName>
<ForeName>Per</ForeName>
<Initials>P</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Breeding, Swedish University of Agricultural Sciences, Växtskyddsvägen 1, P.O. Box 101, SE-23053, Alnarp, Sweden. Per.Hofvander@slu.se.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<DataBankList CompleteYN="Y">
<DataBank>
<DataBankName>SRA</DataBankName>
<AccessionNumberList>
<AccessionNumber>SRX1079394</AccessionNumber>
<AccessionNumber>SRX1079397</AccessionNumber>
<AccessionNumber>SRX1079426</AccessionNumber>
<AccessionNumber>SRX1079428</AccessionNumber>
<AccessionNumber>SRX1079429</AccessionNumber>
<AccessionNumber>SRX1079431</AccessionNumber>
</AccessionNumberList>
</DataBank>
</DataBankList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>08</Month>
<Day>08</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>BMC Plant Biol</MedlineTA>
<NlmUniqueID>100967807</NlmUniqueID>
<ISSNLinking>1471-2229</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029681">Arabidopsis Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014157">Transcription Factors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C495665">WRINKLED1 protein, Arabidopsis</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D029681" MajorTopicYN="N">Arabidopsis Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018554" MajorTopicYN="N">Avena</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D050260" MajorTopicYN="N">Carbohydrate Metabolism</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029786" MajorTopicYN="N">Cyperus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="Y">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030821" MajorTopicYN="N">Plants, Genetically Modified</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D060888" MajorTopicYN="N">Real-Time Polymerase Chain Reaction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011198" MajorTopicYN="N">Solanum tuberosum</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014026" MajorTopicYN="N">Tobacco</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014157" MajorTopicYN="N">Transcription Factors</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2015</Year>
<Month>06</Month>
<Day>10</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2015</Year>
<Month>07</Month>
<Day>23</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>8</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>8</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>4</Month>
<Day>7</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">26253704</ArticleId>
<ArticleId IdType="doi">10.1186/s12870-015-0579-1</ArticleId>
<ArticleId IdType="pii">10.1186/s12870-015-0579-1</ArticleId>
<ArticleId IdType="pmc">PMC4528408</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Jul 26;108(30):12527-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21709233</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2009 Aug;59(4):553-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19392700</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Metab Eng. 2014 May;23:145-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24704560</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2007;2(8):e718</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17684564</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Agric Food Chem. 2008 Sep 10;56(17):7983-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18707115</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Metab Eng. 2010 May;12(3):233-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20004733</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1995 Dec;7(12):2115-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8718622</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2007 Jun;50(5):825-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17419836</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2007 May;50(4):557-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17419838</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Dec;151(4):1773-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19828672</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2007 Nov 13;104(46):18339-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17991776</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2011;62:53-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21526967</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Bot. 2010 Nov;97(11):1884-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21616827</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2012 Jan;40(Database issue):D1202-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22140109</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2006 Apr;46(1):69-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16553896</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Prog Lipid Res. 2010 Jul;49(3):235-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20102727</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Nov;151(3):1617-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19755540</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2013 Feb;11(2):197-210</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23190163</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2012 Dec;24(12):5007-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23243127</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Chem. 1998 Jun;379(6):633-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9687012</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1997 Jul;114(3):851-856</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12223747</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2004 Feb;16(2):465-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14729910</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2011 Dec;68(6):1014-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21851431</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2004 Nov;40(4):575-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15500472</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2010 Jun;61(11):3089-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20497973</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1998 Sep;118(1):91-101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9733529</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Jul;153(3):980-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20488892</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Jun;156(2):674-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21474435</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Physiol Plant Mol Biol. 2000 Jun;51:111-140</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15012188</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol Biochem. 2004 Jun;42(6):501-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15246063</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2011 Jun;156(2):564-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21487046</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013;8(7):e68887</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23922666</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Soc Trans. 2005 Feb;33(Pt 1):280-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15667326</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Metab Eng. 2013 Nov;20:221-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23933465</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2014 Feb;12(2):231-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24151938</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arabidopsis Book. 2008;6:e0113</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22303238</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Lipid Sci Technol. 2011 Jul;113(7):812-831</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22102794</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2004 Jul 21;23(14):2903-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15241470</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2013 Mar;73(5):733-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23384041</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(9):e46451</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23029521</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2002 Jun;14(6):1191-206</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12084821</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Can J Biochem Physiol. 1959 Aug;37(8):911-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13671378</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2013 Sep;25(9):3506-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24076979</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2004 Feb;37(4):617-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14756771</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol Biochem. 2010 Jan;48(1):9-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19828328</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2009 Dec;60(6):933-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19719479</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2011 Sep;67(6):1018-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21615570</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2000 Oct;12(10):2001-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11041893</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2006 Apr;46(1):155-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16553903</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 1969 Sep;84(3):239-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24515428</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2009 Dec;7(9):914-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19843252</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2008 May;54(4):608-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18476867</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Lipidol. 2003 Jun;14(3):281-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12840659</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Nov 3;106(44):18837-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19833868</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2007;58(10):2463-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17586606</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2011 Apr;62(7):2381-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21511915</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2009 Nov;60(3):476-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19594710</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009 Jun;182(4):1013-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19383103</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2002 Jan;29(2):225-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11851922</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Feb;152(2):821-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20007451</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2008 Oct;148(2):1042-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18689444</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Suède</li>
</country>
</list>
<tree>
<country name="Suède">
<noRegion>
<name sortKey="Grimberg, Sa" sort="Grimberg, Sa" uniqKey="Grimberg " first=" Sa" last="Grimberg"> Sa Grimberg</name>
</noRegion>
<name sortKey="Bhalerao, Rishikesh" sort="Bhalerao, Rishikesh" uniqKey="Bhalerao R" first="Rishikesh" last="Bhalerao">Rishikesh Bhalerao</name>
<name sortKey="Carlsson, Anders S" sort="Carlsson, Anders S" uniqKey="Carlsson A" first="Anders S" last="Carlsson">Anders S. Carlsson</name>
<name sortKey="Hofvander, Per" sort="Hofvander, Per" uniqKey="Hofvander P" first="Per" last="Hofvander">Per Hofvander</name>
<name sortKey="Marttila, Salla" sort="Marttila, Salla" uniqKey="Marttila S" first="Salla" last="Marttila">Salla Marttila</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001A88 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001A88 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:26253704
   |texte=   Transcriptional transitions in Nicotiana benthamiana leaves upon induction of oil synthesis by WRINKLED1 homologs from diverse species and tissues.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:26253704" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020