Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Lignocellulosic saccharification by a newly isolated bacterium, Ruminiclostridium thermocellum M3 and cellular cellulase activities for high ratio of glucose to cellobiose.

Identifieur interne : 001786 ( Main/Exploration ); précédent : 001785; suivant : 001787

Lignocellulosic saccharification by a newly isolated bacterium, Ruminiclostridium thermocellum M3 and cellular cellulase activities for high ratio of glucose to cellobiose.

Auteurs : Tao Sheng [République populaire de Chine] ; Lei Zhao ; Ling-Fang Gao [République populaire de Chine] ; Wen-Zong Liu [République populaire de Chine] ; Min-Hua Cui [République populaire de Chine] ; Ze-Chong Guo [République populaire de Chine] ; Xiao-Dan Ma [République populaire de Chine] ; Shih-Hsin Ho [République populaire de Chine] ; Ai-Jie Wang [République populaire de Chine]

Source :

RBID : pubmed:27525041

Abstract

BACKGROUND

Lignocellulosic biomass is one of earth's most abundant resources, and it has great potential for biofuel production because it is renewable and has carbon-neutral characteristics. Lignocellulose is mainly composed of carbohydrate polymers (cellulose and hemicellulose), which contain approximately 75 % fermentable sugars for biofuel fermentation. However, saccharification by cellulases is always the main bottleneck for commercialization. Compared with the enzyme systems of fungi, bacteria have evolved distinct systems to directly degrade lignocellulose. However, most reported bacterial saccharification is not efficient enough without help from additional β-glucosidases. Thus, to enhance the economic feasibility of using lignocellulosic biomass for biofuel production, it will be extremely important to develop a novel bacterial saccharification system that does not require the addition of β-glucosidases.

RESULTS

In this study, a new thermophilic bacterium named Ruminiclostridium thermocellum M3, which could directly saccharify lignocellulosic biomass, was isolated from horse manure. The results showed that R. thermocellum M3 can grow at 60 °C on a variety of carbon polymers, including microcrystalline cellulose, filter paper, and xylan. Upon utilization of these substrates, R. thermocellum M3 achieved an oligosaccharide yield of 481.5 ± 16.0 mg/g Avicel, and a cellular β-glucosidase activity of up to 0.38 U/mL, which is accompanied by a high proportion (approximately 97 %) of glucose during the saccharification. R. thermocellum M3 also showed potential in degrading natural lignocellulosic biomass, without additional pretreatment, to oligosaccharides, and the oligosaccharide yields using poplar sawdust, corn cobs, rice straw, and cornstalks were 52.7 ± 2.77, 77.8 ± 5.9, 89.4 ± 9.3, and 107.8 ± 5.88 mg/g, respectively.

CONCLUSIONS

The newly isolated strain R. thermocellum M3 degraded lignocellulose and accumulated oligosaccharides. R. thermocellum M3 saccharified lignocellulosic feedstock without the need to add β-glucosidases or control the pH, and the high proportion of glucose production distinguishes it from all other known monocultures of cellulolytic bacteria. R. thermocellum M3 is a potential candidate for lignocellulose saccharification, and it is a valuable choice for the refinement of bioproducts.


DOI: 10.1186/s13068-016-0585-z
PubMed: 27525041
PubMed Central: PMC4982309


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Lignocellulosic saccharification by a newly isolated bacterium, Ruminiclostridium thermocellum M3 and cellular cellulase activities for high ratio of glucose to cellobiose.</title>
<author>
<name sortKey="Sheng, Tao" sort="Sheng, Tao" uniqKey="Sheng T" first="Tao" last="Sheng">Tao Sheng</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090 China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin</wicri:regionArea>
<wicri:noRegion>Harbin</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zhao, Lei" sort="Zhao, Lei" uniqKey="Zhao L" first="Lei" last="Zhao">Lei Zhao</name>
<affiliation>
<nlm:affiliation>State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090 China ; Advanced Water Management Centre, Faculty of Engineering, Architecture and Information Technology, The University of Queensland, Brisbane, QLD 4072 Australia.</nlm:affiliation>
<wicri:noCountry code="subField">QLD 4072 Australia</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Gao, Ling Fang" sort="Gao, Ling Fang" uniqKey="Gao L" first="Ling-Fang" last="Gao">Ling-Fang Gao</name>
<affiliation wicri:level="3">
<nlm:affiliation>CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Liu, Wen Zong" sort="Liu, Wen Zong" uniqKey="Liu W" first="Wen-Zong" last="Liu">Wen-Zong Liu</name>
<affiliation wicri:level="3">
<nlm:affiliation>CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Cui, Min Hua" sort="Cui, Min Hua" uniqKey="Cui M" first="Min-Hua" last="Cui">Min-Hua Cui</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090 China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin</wicri:regionArea>
<wicri:noRegion>Harbin</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Guo, Ze Chong" sort="Guo, Ze Chong" uniqKey="Guo Z" first="Ze-Chong" last="Guo">Ze-Chong Guo</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090 China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin</wicri:regionArea>
<wicri:noRegion>Harbin</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ma, Xiao Dan" sort="Ma, Xiao Dan" uniqKey="Ma X" first="Xiao-Dan" last="Ma">Xiao-Dan Ma</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090 China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin</wicri:regionArea>
<wicri:noRegion>Harbin</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ho, Shih Hsin" sort="Ho, Shih Hsin" uniqKey="Ho S" first="Shih-Hsin" last="Ho">Shih-Hsin Ho</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090 China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin</wicri:regionArea>
<wicri:noRegion>Harbin</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wang, Ai Jie" sort="Wang, Ai Jie" uniqKey="Wang A" first="Ai-Jie" last="Wang">Ai-Jie Wang</name>
<affiliation wicri:level="3">
<nlm:affiliation>State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090 China ; CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090 China ; CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2016">2016</date>
<idno type="RBID">pubmed:27525041</idno>
<idno type="pmid">27525041</idno>
<idno type="doi">10.1186/s13068-016-0585-z</idno>
<idno type="pmc">PMC4982309</idno>
<idno type="wicri:Area/Main/Corpus">001664</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001664</idno>
<idno type="wicri:Area/Main/Curation">001664</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001664</idno>
<idno type="wicri:Area/Main/Exploration">001664</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Lignocellulosic saccharification by a newly isolated bacterium, Ruminiclostridium thermocellum M3 and cellular cellulase activities for high ratio of glucose to cellobiose.</title>
<author>
<name sortKey="Sheng, Tao" sort="Sheng, Tao" uniqKey="Sheng T" first="Tao" last="Sheng">Tao Sheng</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090 China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin</wicri:regionArea>
<wicri:noRegion>Harbin</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zhao, Lei" sort="Zhao, Lei" uniqKey="Zhao L" first="Lei" last="Zhao">Lei Zhao</name>
<affiliation>
<nlm:affiliation>State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090 China ; Advanced Water Management Centre, Faculty of Engineering, Architecture and Information Technology, The University of Queensland, Brisbane, QLD 4072 Australia.</nlm:affiliation>
<wicri:noCountry code="subField">QLD 4072 Australia</wicri:noCountry>
</affiliation>
</author>
<author>
<name sortKey="Gao, Ling Fang" sort="Gao, Ling Fang" uniqKey="Gao L" first="Ling-Fang" last="Gao">Ling-Fang Gao</name>
<affiliation wicri:level="3">
<nlm:affiliation>CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Liu, Wen Zong" sort="Liu, Wen Zong" uniqKey="Liu W" first="Wen-Zong" last="Liu">Wen-Zong Liu</name>
<affiliation wicri:level="3">
<nlm:affiliation>CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Cui, Min Hua" sort="Cui, Min Hua" uniqKey="Cui M" first="Min-Hua" last="Cui">Min-Hua Cui</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090 China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin</wicri:regionArea>
<wicri:noRegion>Harbin</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Guo, Ze Chong" sort="Guo, Ze Chong" uniqKey="Guo Z" first="Ze-Chong" last="Guo">Ze-Chong Guo</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090 China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin</wicri:regionArea>
<wicri:noRegion>Harbin</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ma, Xiao Dan" sort="Ma, Xiao Dan" uniqKey="Ma X" first="Xiao-Dan" last="Ma">Xiao-Dan Ma</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090 China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin</wicri:regionArea>
<wicri:noRegion>Harbin</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ho, Shih Hsin" sort="Ho, Shih Hsin" uniqKey="Ho S" first="Shih-Hsin" last="Ho">Shih-Hsin Ho</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090 China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin</wicri:regionArea>
<wicri:noRegion>Harbin</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wang, Ai Jie" sort="Wang, Ai Jie" uniqKey="Wang A" first="Ai-Jie" last="Wang">Ai-Jie Wang</name>
<affiliation wicri:level="3">
<nlm:affiliation>State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090 China ; CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090 China ; CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Biotechnology for biofuels</title>
<idno type="ISSN">1754-6834</idno>
<imprint>
<date when="2016" type="published">2016</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>Lignocellulosic biomass is one of earth's most abundant resources, and it has great potential for biofuel production because it is renewable and has carbon-neutral characteristics. Lignocellulose is mainly composed of carbohydrate polymers (cellulose and hemicellulose), which contain approximately 75 % fermentable sugars for biofuel fermentation. However, saccharification by cellulases is always the main bottleneck for commercialization. Compared with the enzyme systems of fungi, bacteria have evolved distinct systems to directly degrade lignocellulose. However, most reported bacterial saccharification is not efficient enough without help from additional β-glucosidases. Thus, to enhance the economic feasibility of using lignocellulosic biomass for biofuel production, it will be extremely important to develop a novel bacterial saccharification system that does not require the addition of β-glucosidases.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>In this study, a new thermophilic bacterium named Ruminiclostridium thermocellum M3, which could directly saccharify lignocellulosic biomass, was isolated from horse manure. The results showed that R. thermocellum M3 can grow at 60 °C on a variety of carbon polymers, including microcrystalline cellulose, filter paper, and xylan. Upon utilization of these substrates, R. thermocellum M3 achieved an oligosaccharide yield of 481.5 ± 16.0 mg/g Avicel, and a cellular β-glucosidase activity of up to 0.38 U/mL, which is accompanied by a high proportion (approximately 97 %) of glucose during the saccharification. R. thermocellum M3 also showed potential in degrading natural lignocellulosic biomass, without additional pretreatment, to oligosaccharides, and the oligosaccharide yields using poplar sawdust, corn cobs, rice straw, and cornstalks were 52.7 ± 2.77, 77.8 ± 5.9, 89.4 ± 9.3, and 107.8 ± 5.88 mg/g, respectively.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>The newly isolated strain R. thermocellum M3 degraded lignocellulose and accumulated oligosaccharides. R. thermocellum M3 saccharified lignocellulosic feedstock without the need to add β-glucosidases or control the pH, and the high proportion of glucose production distinguishes it from all other known monocultures of cellulolytic bacteria. R. thermocellum M3 is a potential candidate for lignocellulose saccharification, and it is a valuable choice for the refinement of bioproducts.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">27525041</PMID>
<DateCompleted>
<Year>2016</Year>
<Month>08</Month>
<Day>15</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>30</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">1754-6834</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>9</Volume>
<PubDate>
<Year>2016</Year>
</PubDate>
</JournalIssue>
<Title>Biotechnology for biofuels</Title>
<ISOAbbreviation>Biotechnol Biofuels</ISOAbbreviation>
</Journal>
<ArticleTitle>Lignocellulosic saccharification by a newly isolated bacterium, Ruminiclostridium thermocellum M3 and cellular cellulase activities for high ratio of glucose to cellobiose.</ArticleTitle>
<Pagination>
<MedlinePgn>172</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/s13068-016-0585-z</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Lignocellulosic biomass is one of earth's most abundant resources, and it has great potential for biofuel production because it is renewable and has carbon-neutral characteristics. Lignocellulose is mainly composed of carbohydrate polymers (cellulose and hemicellulose), which contain approximately 75 % fermentable sugars for biofuel fermentation. However, saccharification by cellulases is always the main bottleneck for commercialization. Compared with the enzyme systems of fungi, bacteria have evolved distinct systems to directly degrade lignocellulose. However, most reported bacterial saccharification is not efficient enough without help from additional β-glucosidases. Thus, to enhance the economic feasibility of using lignocellulosic biomass for biofuel production, it will be extremely important to develop a novel bacterial saccharification system that does not require the addition of β-glucosidases.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">In this study, a new thermophilic bacterium named Ruminiclostridium thermocellum M3, which could directly saccharify lignocellulosic biomass, was isolated from horse manure. The results showed that R. thermocellum M3 can grow at 60 °C on a variety of carbon polymers, including microcrystalline cellulose, filter paper, and xylan. Upon utilization of these substrates, R. thermocellum M3 achieved an oligosaccharide yield of 481.5 ± 16.0 mg/g Avicel, and a cellular β-glucosidase activity of up to 0.38 U/mL, which is accompanied by a high proportion (approximately 97 %) of glucose during the saccharification. R. thermocellum M3 also showed potential in degrading natural lignocellulosic biomass, without additional pretreatment, to oligosaccharides, and the oligosaccharide yields using poplar sawdust, corn cobs, rice straw, and cornstalks were 52.7 ± 2.77, 77.8 ± 5.9, 89.4 ± 9.3, and 107.8 ± 5.88 mg/g, respectively.</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">The newly isolated strain R. thermocellum M3 degraded lignocellulose and accumulated oligosaccharides. R. thermocellum M3 saccharified lignocellulosic feedstock without the need to add β-glucosidases or control the pH, and the high proportion of glucose production distinguishes it from all other known monocultures of cellulolytic bacteria. R. thermocellum M3 is a potential candidate for lignocellulose saccharification, and it is a valuable choice for the refinement of bioproducts.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Sheng</LastName>
<ForeName>Tao</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090 China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhao</LastName>
<ForeName>Lei</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090 China ; Advanced Water Management Centre, Faculty of Engineering, Architecture and Information Technology, The University of Queensland, Brisbane, QLD 4072 Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Gao</LastName>
<ForeName>Ling-Fang</ForeName>
<Initials>LF</Initials>
<AffiliationInfo>
<Affiliation>CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Liu</LastName>
<ForeName>Wen-Zong</ForeName>
<Initials>WZ</Initials>
<AffiliationInfo>
<Affiliation>CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Cui</LastName>
<ForeName>Min-Hua</ForeName>
<Initials>MH</Initials>
<AffiliationInfo>
<Affiliation>State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090 China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Guo</LastName>
<ForeName>Ze-Chong</ForeName>
<Initials>ZC</Initials>
<AffiliationInfo>
<Affiliation>State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090 China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ma</LastName>
<ForeName>Xiao-Dan</ForeName>
<Initials>XD</Initials>
<AffiliationInfo>
<Affiliation>State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090 China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ho</LastName>
<ForeName>Shih-Hsin</ForeName>
<Initials>SH</Initials>
<AffiliationInfo>
<Affiliation>State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090 China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Ai-Jie</ForeName>
<Initials>AJ</Initials>
<AffiliationInfo>
<Affiliation>State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090 China ; CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2016</Year>
<Month>08</Month>
<Day>11</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Biotechnol Biofuels</MedlineTA>
<NlmUniqueID>101316935</NlmUniqueID>
<ISSNLinking>1754-6834</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Cellulase</Keyword>
<Keyword MajorTopicYN="N">Glucose</Keyword>
<Keyword MajorTopicYN="N">Lignocellulose</Keyword>
<Keyword MajorTopicYN="N">Oligosaccharides</Keyword>
<Keyword MajorTopicYN="N">Ruminiclostridium thermocellum</Keyword>
<Keyword MajorTopicYN="N">Saccharification</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2016</Year>
<Month>02</Month>
<Day>09</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2016</Year>
<Month>07</Month>
<Day>27</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2016</Year>
<Month>8</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2016</Year>
<Month>8</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>8</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">27525041</ArticleId>
<ArticleId IdType="doi">10.1186/s13068-016-0585-z</ArticleId>
<ArticleId IdType="pii">585</ArticleId>
<ArticleId IdType="pmc">PMC4982309</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Biosci Biotechnol Biochem. 2000 Feb;64(2):254-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10737178</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Mol Biol Rev. 2002 Sep;66(3):506-77, table of contents</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12209002</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol. 1956 Jan;4(1):39-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13283538</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Microbiol. 2004;58:521-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15487947</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci China C Life Sci. 2005 Apr;48(2):155-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15986888</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1982 May;43(5):1125-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16346009</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1988 Jan;54(1):204-211</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16347527</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1990 Dec;56(12):3798-804</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16348380</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1942 Jun;43(6):701-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16560531</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiology. 2006 Dec;152(Pt 12):3613-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17159214</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Appl Microbiol. 2007 Dec;103(6):2196-204</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18045402</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Ind Microbiol Biotechnol. 2008 May;35(5):377-391</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18338189</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann N Y Acad Sci. 2008 Mar;1125:1-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18378585</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Syst Bacteriol. 1991 Apr;41(2):306-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1854643</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Bioeng. 1990 Jul;36(3):275-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18595079</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2009 Feb;82(1):141-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18998122</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Mol Sci. 2008 Sep;9(9):1621-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19325822</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biosci Bioeng. 2009 May;107(5):488-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19393545</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Syst Evol Microbiol. 2010 Jan;60(Pt 1):67-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19648349</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Adv. 2010 Sep-Oct;28(5):556-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20546879</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1991 Jul;173(13):4155-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2061292</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Biotechnol. 2010 Dec 31;27(6):810-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20937420</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2011 Jan;77(2):517-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21097577</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2011 May;102(10):6065-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21470856</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2012 Jan;103(1):293-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22055095</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Lett. 2012 Jan;326(1):62-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22092776</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1990 Oct;172(10):6098-105</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2211528</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2012 Mar;107:352-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22257861</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Biofuels. 2013 Dec 21;6(1):184</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24359557</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>World J Microbiol Biotechnol. 1994 May;10(3):280-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24421011</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Biofuels. 2014 Jun 03;7:82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24920960</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Biochem Biotechnol. 2015 Apr;175(8):3709-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25724976</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2015 Jun;186:325-328</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25818258</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2015 Dec;197:422-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26356113</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Evolution. 1985 Jul;39(4):783-791</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28561359</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1985 Aug;163(2):552-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4019409</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1985 Oct;50(4):1043-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4083872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Lett. 1994 Jul 15;120(3):263-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8076802</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1976 May 7;72:248-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">942051</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
<settlement>
<li>Pékin</li>
</settlement>
</list>
<tree>
<noCountry>
<name sortKey="Zhao, Lei" sort="Zhao, Lei" uniqKey="Zhao L" first="Lei" last="Zhao">Lei Zhao</name>
</noCountry>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Sheng, Tao" sort="Sheng, Tao" uniqKey="Sheng T" first="Tao" last="Sheng">Tao Sheng</name>
</noRegion>
<name sortKey="Cui, Min Hua" sort="Cui, Min Hua" uniqKey="Cui M" first="Min-Hua" last="Cui">Min-Hua Cui</name>
<name sortKey="Gao, Ling Fang" sort="Gao, Ling Fang" uniqKey="Gao L" first="Ling-Fang" last="Gao">Ling-Fang Gao</name>
<name sortKey="Guo, Ze Chong" sort="Guo, Ze Chong" uniqKey="Guo Z" first="Ze-Chong" last="Guo">Ze-Chong Guo</name>
<name sortKey="Ho, Shih Hsin" sort="Ho, Shih Hsin" uniqKey="Ho S" first="Shih-Hsin" last="Ho">Shih-Hsin Ho</name>
<name sortKey="Liu, Wen Zong" sort="Liu, Wen Zong" uniqKey="Liu W" first="Wen-Zong" last="Liu">Wen-Zong Liu</name>
<name sortKey="Ma, Xiao Dan" sort="Ma, Xiao Dan" uniqKey="Ma X" first="Xiao-Dan" last="Ma">Xiao-Dan Ma</name>
<name sortKey="Wang, Ai Jie" sort="Wang, Ai Jie" uniqKey="Wang A" first="Ai-Jie" last="Wang">Ai-Jie Wang</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001786 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001786 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:27525041
   |texte=   Lignocellulosic saccharification by a newly isolated bacterium, Ruminiclostridium thermocellum M3 and cellular cellulase activities for high ratio of glucose to cellobiose.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:27525041" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020