Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Dying piece by piece: carbohydrate dynamics in aspen (Populus tremuloides) seedlings under severe carbon stress.

Identifieur interne : 001427 ( Main/Exploration ); précédent : 001426; suivant : 001428

Dying piece by piece: carbohydrate dynamics in aspen (Populus tremuloides) seedlings under severe carbon stress.

Auteurs : Erin Wiley [Canada] ; Günter Hoch [Suisse] ; Simon M. Landh Usser [Canada]

Source :

RBID : pubmed:29036658

Descripteurs français

English descriptors

Abstract

Carbon starvation as a mechanism of tree mortality is poorly understood. We exposed seedlings of aspen (Populus tremuloides) to complete darkness at 20 or 28 °C to identify minimum non-structural carbohydrate (NSC) concentrations at which trees die and to see if these levels vary between organs or with environmental conditions. We also first grew seedlings under different shade levels to determine if size affects survival time under darkness due to changes in initial NSC concentration and pool size and/or respiration rates. Darkness treatments caused a gradual dieback of tissues. Even after half the stem had died, substantial starch reserves were still present in the roots (1.3-3% dry weight), indicating limitations to carbohydrate remobilization and/or transport during starvation in the absence of water stress. Survival time decreased with increased temperature and with increasing initial shade level, which was associated with smaller biomass, higher respiration rates, and initially smaller NSC pool size. Dead tissues generally contained no starch, but sugar concentrations were substantially above zero and differed between organs (~2% in stems up to ~7.5% in leaves) and, at times, between temperature treatments and initial, pre-darkness shade treatments. Minimum root NSC concentrations were difficult to determine because dead roots quickly began to decompose, but we identify 5-6% sugar as a potential threshold for living roots. This variability may complicate efforts to identify critical NSC thresholds below which trees starve.

DOI: 10.1093/jxb/erx342
PubMed: 29036658
PubMed Central: PMC5853906


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Dying piece by piece: carbohydrate dynamics in aspen (Populus tremuloides) seedlings under severe carbon stress.</title>
<author>
<name sortKey="Wiley, Erin" sort="Wiley, Erin" uniqKey="Wiley E" first="Erin" last="Wiley">Erin Wiley</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Renewable Resources, University of Alberta, Edmonton, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Renewable Resources, University of Alberta, Edmonton</wicri:regionArea>
<placeName>
<settlement type="city">Edmonton</settlement>
<region type="state">Alberta</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Hoch, Gunter" sort="Hoch, Gunter" uniqKey="Hoch G" first="Günter" last="Hoch">Günter Hoch</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Environmental Sciences - Botany, University of Basel, Basel, Switzerland.</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Department of Environmental Sciences - Botany, University of Basel, Basel</wicri:regionArea>
<wicri:noRegion>Basel</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Landh Usser, Simon M" sort="Landh Usser, Simon M" uniqKey="Landh Usser S" first="Simon M" last="Landh Usser">Simon M. Landh Usser</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Renewable Resources, University of Alberta, Edmonton, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Renewable Resources, University of Alberta, Edmonton</wicri:regionArea>
<placeName>
<settlement type="city">Edmonton</settlement>
<region type="state">Alberta</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2017">2017</date>
<idno type="RBID">pubmed:29036658</idno>
<idno type="pmid">29036658</idno>
<idno type="doi">10.1093/jxb/erx342</idno>
<idno type="pmc">PMC5853906</idno>
<idno type="wicri:Area/Main/Corpus">001122</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001122</idno>
<idno type="wicri:Area/Main/Curation">001122</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001122</idno>
<idno type="wicri:Area/Main/Exploration">001122</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Dying piece by piece: carbohydrate dynamics in aspen (Populus tremuloides) seedlings under severe carbon stress.</title>
<author>
<name sortKey="Wiley, Erin" sort="Wiley, Erin" uniqKey="Wiley E" first="Erin" last="Wiley">Erin Wiley</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Renewable Resources, University of Alberta, Edmonton, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Renewable Resources, University of Alberta, Edmonton</wicri:regionArea>
<placeName>
<settlement type="city">Edmonton</settlement>
<region type="state">Alberta</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Hoch, Gunter" sort="Hoch, Gunter" uniqKey="Hoch G" first="Günter" last="Hoch">Günter Hoch</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Environmental Sciences - Botany, University of Basel, Basel, Switzerland.</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Department of Environmental Sciences - Botany, University of Basel, Basel</wicri:regionArea>
<wicri:noRegion>Basel</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Landh Usser, Simon M" sort="Landh Usser, Simon M" uniqKey="Landh Usser S" first="Simon M" last="Landh Usser">Simon M. Landh Usser</name>
<affiliation wicri:level="3">
<nlm:affiliation>Department of Renewable Resources, University of Alberta, Edmonton, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Renewable Resources, University of Alberta, Edmonton</wicri:regionArea>
<placeName>
<settlement type="city">Edmonton</settlement>
<region type="state">Alberta</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of experimental botany</title>
<idno type="eISSN">1460-2431</idno>
<imprint>
<date when="2017" type="published">2017</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Biomass (MeSH)</term>
<term>Carbohydrate Metabolism (radiation effects)</term>
<term>Carbon (deficiency)</term>
<term>Carbon (radiation effects)</term>
<term>Darkness (MeSH)</term>
<term>Plant Leaves (physiology)</term>
<term>Plant Leaves (radiation effects)</term>
<term>Plant Roots (physiology)</term>
<term>Plant Roots (radiation effects)</term>
<term>Plant Stems (physiology)</term>
<term>Plant Stems (radiation effects)</term>
<term>Populus (physiology)</term>
<term>Populus (radiation effects)</term>
<term>Seedlings (physiology)</term>
<term>Seedlings (radiation effects)</term>
<term>Starch (metabolism)</term>
<term>Trees (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Amidon (métabolisme)</term>
<term>Arbres (MeSH)</term>
<term>Biomasse (MeSH)</term>
<term>Carbone (déficit)</term>
<term>Carbone (effets des radiations)</term>
<term>Feuilles de plante (effets des radiations)</term>
<term>Feuilles de plante (physiologie)</term>
<term>Métabolisme glucidique (effets des radiations)</term>
<term>Obscurité (MeSH)</term>
<term>Plant (effets des radiations)</term>
<term>Plant (physiologie)</term>
<term>Populus (effets des radiations)</term>
<term>Populus (physiologie)</term>
<term>Racines de plante (effets des radiations)</term>
<term>Racines de plante (physiologie)</term>
<term>Tiges de plante (effets des radiations)</term>
<term>Tiges de plante (physiologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="deficiency" xml:lang="en">
<term>Carbon</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Starch</term>
</keywords>
<keywords scheme="MESH" qualifier="déficit" xml:lang="fr">
<term>Carbone</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des radiations" xml:lang="fr">
<term>Carbone</term>
<term>Feuilles de plante</term>
<term>Métabolisme glucidique</term>
<term>Plant</term>
<term>Populus</term>
<term>Racines de plante</term>
<term>Tiges de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Amidon</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Feuilles de plante</term>
<term>Plant</term>
<term>Populus</term>
<term>Racines de plante</term>
<term>Tiges de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Plant Leaves</term>
<term>Plant Roots</term>
<term>Plant Stems</term>
<term>Populus</term>
<term>Seedlings</term>
</keywords>
<keywords scheme="MESH" qualifier="radiation effects" xml:lang="en">
<term>Carbohydrate Metabolism</term>
<term>Carbon</term>
<term>Plant Leaves</term>
<term>Plant Roots</term>
<term>Plant Stems</term>
<term>Populus</term>
<term>Seedlings</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biomass</term>
<term>Darkness</term>
<term>Trees</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Arbres</term>
<term>Biomasse</term>
<term>Obscurité</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Carbon starvation as a mechanism of tree mortality is poorly understood. We exposed seedlings of aspen (Populus tremuloides) to complete darkness at 20 or 28 °C to identify minimum non-structural carbohydrate (NSC) concentrations at which trees die and to see if these levels vary between organs or with environmental conditions. We also first grew seedlings under different shade levels to determine if size affects survival time under darkness due to changes in initial NSC concentration and pool size and/or respiration rates. Darkness treatments caused a gradual dieback of tissues. Even after half the stem had died, substantial starch reserves were still present in the roots (1.3-3% dry weight), indicating limitations to carbohydrate remobilization and/or transport during starvation in the absence of water stress. Survival time decreased with increased temperature and with increasing initial shade level, which was associated with smaller biomass, higher respiration rates, and initially smaller NSC pool size. Dead tissues generally contained no starch, but sugar concentrations were substantially above zero and differed between organs (~2% in stems up to ~7.5% in leaves) and, at times, between temperature treatments and initial, pre-darkness shade treatments. Minimum root NSC concentrations were difficult to determine because dead roots quickly began to decompose, but we identify 5-6% sugar as a potential threshold for living roots. This variability may complicate efforts to identify critical NSC thresholds below which trees starve.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">29036658</PMID>
<DateCompleted>
<Year>2018</Year>
<Month>07</Month>
<Day>05</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1460-2431</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>68</Volume>
<Issue>18</Issue>
<PubDate>
<Year>2017</Year>
<Month>Nov</Month>
<Day>02</Day>
</PubDate>
</JournalIssue>
<Title>Journal of experimental botany</Title>
<ISOAbbreviation>J Exp Bot</ISOAbbreviation>
</Journal>
<ArticleTitle>Dying piece by piece: carbohydrate dynamics in aspen (Populus tremuloides) seedlings under severe carbon stress.</ArticleTitle>
<Pagination>
<MedlinePgn>5221-5232</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1093/jxb/erx342</ELocationID>
<Abstract>
<AbstractText>Carbon starvation as a mechanism of tree mortality is poorly understood. We exposed seedlings of aspen (Populus tremuloides) to complete darkness at 20 or 28 °C to identify minimum non-structural carbohydrate (NSC) concentrations at which trees die and to see if these levels vary between organs or with environmental conditions. We also first grew seedlings under different shade levels to determine if size affects survival time under darkness due to changes in initial NSC concentration and pool size and/or respiration rates. Darkness treatments caused a gradual dieback of tissues. Even after half the stem had died, substantial starch reserves were still present in the roots (1.3-3% dry weight), indicating limitations to carbohydrate remobilization and/or transport during starvation in the absence of water stress. Survival time decreased with increased temperature and with increasing initial shade level, which was associated with smaller biomass, higher respiration rates, and initially smaller NSC pool size. Dead tissues generally contained no starch, but sugar concentrations were substantially above zero and differed between organs (~2% in stems up to ~7.5% in leaves) and, at times, between temperature treatments and initial, pre-darkness shade treatments. Minimum root NSC concentrations were difficult to determine because dead roots quickly began to decompose, but we identify 5-6% sugar as a potential threshold for living roots. This variability may complicate efforts to identify critical NSC thresholds below which trees starve.</AbstractText>
<CopyrightInformation>© Society for Experimental Biology 2017.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Wiley</LastName>
<ForeName>Erin</ForeName>
<Initials>E</Initials>
<AffiliationInfo>
<Affiliation>Department of Renewable Resources, University of Alberta, Edmonton, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hoch</LastName>
<ForeName>Günter</ForeName>
<Initials>G</Initials>
<AffiliationInfo>
<Affiliation>Department of Environmental Sciences - Botany, University of Basel, Basel, Switzerland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Landhäusser</LastName>
<ForeName>Simon M</ForeName>
<Initials>SM</Initials>
<AffiliationInfo>
<Affiliation>Department of Renewable Resources, University of Alberta, Edmonton, Canada.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>J Exp Bot</MedlineTA>
<NlmUniqueID>9882906</NlmUniqueID>
<ISSNLinking>0022-0957</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>7440-44-0</RegistryNumber>
<NameOfSubstance UI="D002244">Carbon</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9005-25-8</RegistryNumber>
<NameOfSubstance UI="D013213">Starch</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D018533" MajorTopicYN="N">Biomass</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D050260" MajorTopicYN="N">Carbohydrate Metabolism</DescriptorName>
<QualifierName UI="Q000528" MajorTopicYN="Y">radiation effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002244" MajorTopicYN="N">Carbon</DescriptorName>
<QualifierName UI="Q000172" MajorTopicYN="Y">deficiency</QualifierName>
<QualifierName UI="Q000528" MajorTopicYN="N">radiation effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003624" MajorTopicYN="N">Darkness</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
<QualifierName UI="Q000528" MajorTopicYN="N">radiation effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
<QualifierName UI="Q000528" MajorTopicYN="N">radiation effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018547" MajorTopicYN="N">Plant Stems</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
<QualifierName UI="Q000528" MajorTopicYN="N">radiation effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
<QualifierName UI="Q000528" MajorTopicYN="N">radiation effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D036226" MajorTopicYN="N">Seedlings</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
<QualifierName UI="Q000528" MajorTopicYN="N">radiation effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013213" MajorTopicYN="N">Starch</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014197" MajorTopicYN="N">Trees</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Tree mortality</Keyword>
<Keyword MajorTopicYN="N">carbon limitation</Keyword>
<Keyword MajorTopicYN="N">non-structural carbohydrates</Keyword>
<Keyword MajorTopicYN="N">remobilization</Keyword>
<Keyword MajorTopicYN="N">shade</Keyword>
<Keyword MajorTopicYN="N">starvation</Keyword>
<Keyword MajorTopicYN="N">storage</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2017</Year>
<Month>10</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>7</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2017</Year>
<Month>10</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">29036658</ArticleId>
<ArticleId IdType="pii">4243602</ArticleId>
<ArticleId IdType="doi">10.1093/jxb/erx342</ArticleId>
<ArticleId IdType="pmc">PMC5853906</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Tree Physiol. 2011 Mar;31(3):237-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21512097</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2013 Mar;197(4):1142-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23311898</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2006 Apr;29(4):632-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17080613</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2013 Apr;198(1):139-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23347066</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2009 Apr;29(4):579-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19203981</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2016 Mar;156(3):294-310</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26263877</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1991 Jun;96(2):619-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16668231</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2004 Oct;24(10):1087-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15294755</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecology. 2007 Apr;88(4):1000-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17536715</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2013 Apr;33(4):438-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23574752</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2007;175(1):11-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17547663</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Ecol Evol. 2011 Oct;26(10):523-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21802765</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2014 Sep;203(4):1028-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24824859</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2004 Oct;24(10):1129-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15294759</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2016 Nov;36(11):1400-1408</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27539732</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2005 Oct;56(420):2651-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16143721</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2010 Apr;186(2):274-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20409184</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2013 Oct;200(2):340-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23692181</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2014;65:667-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24274032</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2002 Jul;22(10):725-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12091154</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2012 Jun;32(6):764-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22302370</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2014 Jan;37(1):153-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23730972</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2015 Dec;179(4):1011-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26318296</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2008;178(4):719-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18422905</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 1998 Oct;18(10):665-670</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12651416</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2015 Nov;35(11):1146-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26423132</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2012 Mar;32(3):303-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22367761</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2016 Jan;209(2):550-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26256444</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2012 Dec;17(12):693-700</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23099222</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1999 Oct;121(1):1-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28307877</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2010 Apr;186(2):264-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20409181</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2013 Dec;200(4):1145-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24032647</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Canada</li>
<li>Suisse</li>
</country>
<region>
<li>Alberta</li>
</region>
<settlement>
<li>Edmonton</li>
</settlement>
</list>
<tree>
<country name="Canada">
<region name="Alberta">
<name sortKey="Wiley, Erin" sort="Wiley, Erin" uniqKey="Wiley E" first="Erin" last="Wiley">Erin Wiley</name>
</region>
<name sortKey="Landh Usser, Simon M" sort="Landh Usser, Simon M" uniqKey="Landh Usser S" first="Simon M" last="Landh Usser">Simon M. Landh Usser</name>
</country>
<country name="Suisse">
<noRegion>
<name sortKey="Hoch, Gunter" sort="Hoch, Gunter" uniqKey="Hoch G" first="Günter" last="Hoch">Günter Hoch</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001427 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001427 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:29036658
   |texte=   Dying piece by piece: carbohydrate dynamics in aspen (Populus tremuloides) seedlings under severe carbon stress.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:29036658" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020