Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Evaluation of redundancy analysis to identify signatures of local adaptation.

Identifieur interne : 000F17 ( Main/Exploration ); précédent : 000F16; suivant : 000F18

Evaluation of redundancy analysis to identify signatures of local adaptation.

Auteurs : Thibaut Capblancq [France] ; Keurcien Luu [France] ; Michael G B. Blum [France] ; Eric Bazin [France]

Source :

RBID : pubmed:29802785

Descripteurs français

English descriptors

Abstract

Ordination is a common tool in ecology that aims at representing complex biological information in a reduced space. In landscape genetics, ordination methods such as principal component analysis (PCA) have been used to detect adaptive variation based on genomic data. Taking advantage of environmental data in addition to genotype data, redundancy analysis (RDA) is another ordination approach that is useful to detect adaptive variation. This study aims at proposing a test statistic based on RDA to search for loci under selection. We compare redundancy analysis to pcadapt, which is a nonconstrained ordination method, and to a latent factor mixed model (LFMM), which is a univariate genotype-environment association method. Individual-based simulations identify evolutionary scenarios where RDA genome scans have a greater statistical power than genome scans based on PCA. By constraining the analysis with environmental variables, RDA performs better than PCA in identifying adaptive variation when selection gradients are weakly correlated with population structure. In addition, we show that if RDA and LFMM have a similar power to identify genetic markers associated with environmental variables, the RDA-based procedure has the advantage to identify the main selective gradients as a combination of environmental variables. To give a concrete illustration of RDA in population genomics, we apply this method to the detection of outliers and selective gradients on an SNP data set of Populus trichocarpa (Geraldes et al., ). The RDA-based approach identifies the main selective gradient contrasting southern and coastal populations to northern and continental populations in the north-western American coast.

DOI: 10.1111/1755-0998.12906
PubMed: 29802785


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Evaluation of redundancy analysis to identify signatures of local adaptation.</title>
<author>
<name sortKey="Capblancq, Thibaut" sort="Capblancq, Thibaut" uniqKey="Capblancq T" first="Thibaut" last="Capblancq">Thibaut Capblancq</name>
<affiliation wicri:level="3">
<nlm:affiliation>CNRS, LECA UMR 5553, Univ. Grenoble Alpes, Grenoble, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>CNRS, LECA UMR 5553, Univ. Grenoble Alpes, Grenoble</wicri:regionArea>
<placeName>
<region type="region">Auvergne-Rhône-Alpes</region>
<region type="old region">Rhône-Alpes</region>
<settlement type="city">Grenoble</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Luu, Keurcien" sort="Luu, Keurcien" uniqKey="Luu K" first="Keurcien" last="Luu">Keurcien Luu</name>
<affiliation wicri:level="3">
<nlm:affiliation>CNRS, TIMC-IMAG UMR 5525, Univ. Grenoble Alpes, Grenoble, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>CNRS, TIMC-IMAG UMR 5525, Univ. Grenoble Alpes, Grenoble</wicri:regionArea>
<placeName>
<region type="region">Auvergne-Rhône-Alpes</region>
<region type="old region">Rhône-Alpes</region>
<settlement type="city">Grenoble</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Blum, Michael G B" sort="Blum, Michael G B" uniqKey="Blum M" first="Michael G B" last="Blum">Michael G B. Blum</name>
<affiliation wicri:level="3">
<nlm:affiliation>CNRS, TIMC-IMAG UMR 5525, Univ. Grenoble Alpes, Grenoble, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>CNRS, TIMC-IMAG UMR 5525, Univ. Grenoble Alpes, Grenoble</wicri:regionArea>
<placeName>
<region type="region">Auvergne-Rhône-Alpes</region>
<region type="old region">Rhône-Alpes</region>
<settlement type="city">Grenoble</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Bazin, Eric" sort="Bazin, Eric" uniqKey="Bazin E" first="Eric" last="Bazin">Eric Bazin</name>
<affiliation wicri:level="3">
<nlm:affiliation>CNRS, LECA UMR 5553, Univ. Grenoble Alpes, Grenoble, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>CNRS, LECA UMR 5553, Univ. Grenoble Alpes, Grenoble</wicri:regionArea>
<placeName>
<region type="region">Auvergne-Rhône-Alpes</region>
<region type="old region">Rhône-Alpes</region>
<settlement type="city">Grenoble</settlement>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:29802785</idno>
<idno type="pmid">29802785</idno>
<idno type="doi">10.1111/1755-0998.12906</idno>
<idno type="wicri:Area/Main/Corpus">000E11</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000E11</idno>
<idno type="wicri:Area/Main/Curation">000E11</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000E11</idno>
<idno type="wicri:Area/Main/Exploration">000E11</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Evaluation of redundancy analysis to identify signatures of local adaptation.</title>
<author>
<name sortKey="Capblancq, Thibaut" sort="Capblancq, Thibaut" uniqKey="Capblancq T" first="Thibaut" last="Capblancq">Thibaut Capblancq</name>
<affiliation wicri:level="3">
<nlm:affiliation>CNRS, LECA UMR 5553, Univ. Grenoble Alpes, Grenoble, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>CNRS, LECA UMR 5553, Univ. Grenoble Alpes, Grenoble</wicri:regionArea>
<placeName>
<region type="region">Auvergne-Rhône-Alpes</region>
<region type="old region">Rhône-Alpes</region>
<settlement type="city">Grenoble</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Luu, Keurcien" sort="Luu, Keurcien" uniqKey="Luu K" first="Keurcien" last="Luu">Keurcien Luu</name>
<affiliation wicri:level="3">
<nlm:affiliation>CNRS, TIMC-IMAG UMR 5525, Univ. Grenoble Alpes, Grenoble, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>CNRS, TIMC-IMAG UMR 5525, Univ. Grenoble Alpes, Grenoble</wicri:regionArea>
<placeName>
<region type="region">Auvergne-Rhône-Alpes</region>
<region type="old region">Rhône-Alpes</region>
<settlement type="city">Grenoble</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Blum, Michael G B" sort="Blum, Michael G B" uniqKey="Blum M" first="Michael G B" last="Blum">Michael G B. Blum</name>
<affiliation wicri:level="3">
<nlm:affiliation>CNRS, TIMC-IMAG UMR 5525, Univ. Grenoble Alpes, Grenoble, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>CNRS, TIMC-IMAG UMR 5525, Univ. Grenoble Alpes, Grenoble</wicri:regionArea>
<placeName>
<region type="region">Auvergne-Rhône-Alpes</region>
<region type="old region">Rhône-Alpes</region>
<settlement type="city">Grenoble</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Bazin, Eric" sort="Bazin, Eric" uniqKey="Bazin E" first="Eric" last="Bazin">Eric Bazin</name>
<affiliation wicri:level="3">
<nlm:affiliation>CNRS, LECA UMR 5553, Univ. Grenoble Alpes, Grenoble, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>CNRS, LECA UMR 5553, Univ. Grenoble Alpes, Grenoble</wicri:regionArea>
<placeName>
<region type="region">Auvergne-Rhône-Alpes</region>
<region type="old region">Rhône-Alpes</region>
<settlement type="city">Grenoble</settlement>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Molecular ecology resources</title>
<idno type="eISSN">1755-0998</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adaptation, Biological (MeSH)</term>
<term>Biostatistics (methods)</term>
<term>Computational Biology (methods)</term>
<term>Genetic Loci (MeSH)</term>
<term>Genetic Variation (MeSH)</term>
<term>Genetics, Population (methods)</term>
<term>Genomics (methods)</term>
<term>Genotype (MeSH)</term>
<term>Polymorphism, Single Nucleotide (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Adaptation biologique (MeSH)</term>
<term>Biologie informatique (méthodes)</term>
<term>Biostatistiques (méthodes)</term>
<term>Génomique (méthodes)</term>
<term>Génotype (MeSH)</term>
<term>Génétique des populations (méthodes)</term>
<term>Locus génétiques (MeSH)</term>
<term>Polymorphisme de nucléotide simple (MeSH)</term>
<term>Variation génétique (MeSH)</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Biostatistics</term>
<term>Computational Biology</term>
<term>Genetics, Population</term>
<term>Genomics</term>
</keywords>
<keywords scheme="MESH" qualifier="méthodes" xml:lang="fr">
<term>Biologie informatique</term>
<term>Biostatistiques</term>
<term>Génomique</term>
<term>Génétique des populations</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Adaptation, Biological</term>
<term>Genetic Loci</term>
<term>Genetic Variation</term>
<term>Genotype</term>
<term>Polymorphism, Single Nucleotide</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Adaptation biologique</term>
<term>Génotype</term>
<term>Locus génétiques</term>
<term>Polymorphisme de nucléotide simple</term>
<term>Variation génétique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Ordination is a common tool in ecology that aims at representing complex biological information in a reduced space. In landscape genetics, ordination methods such as principal component analysis (PCA) have been used to detect adaptive variation based on genomic data. Taking advantage of environmental data in addition to genotype data, redundancy analysis (RDA) is another ordination approach that is useful to detect adaptive variation. This study aims at proposing a test statistic based on RDA to search for loci under selection. We compare redundancy analysis to pcadapt, which is a nonconstrained ordination method, and to a latent factor mixed model (LFMM), which is a univariate genotype-environment association method. Individual-based simulations identify evolutionary scenarios where RDA genome scans have a greater statistical power than genome scans based on PCA. By constraining the analysis with environmental variables, RDA performs better than PCA in identifying adaptive variation when selection gradients are weakly correlated with population structure. In addition, we show that if RDA and LFMM have a similar power to identify genetic markers associated with environmental variables, the RDA-based procedure has the advantage to identify the main selective gradients as a combination of environmental variables. To give a concrete illustration of RDA in population genomics, we apply this method to the detection of outliers and selective gradients on an SNP data set of Populus trichocarpa (Geraldes et al., ). The RDA-based approach identifies the main selective gradient contrasting southern and coastal populations to northern and continental populations in the north-western American coast.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">29802785</PMID>
<DateCompleted>
<Year>2018</Year>
<Month>12</Month>
<Day>17</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>12</Month>
<Day>17</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1755-0998</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>18</Volume>
<Issue>6</Issue>
<PubDate>
<Year>2018</Year>
<Month>Nov</Month>
</PubDate>
</JournalIssue>
<Title>Molecular ecology resources</Title>
<ISOAbbreviation>Mol Ecol Resour</ISOAbbreviation>
</Journal>
<ArticleTitle>Evaluation of redundancy analysis to identify signatures of local adaptation.</ArticleTitle>
<Pagination>
<MedlinePgn>1223-1233</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/1755-0998.12906</ELocationID>
<Abstract>
<AbstractText>Ordination is a common tool in ecology that aims at representing complex biological information in a reduced space. In landscape genetics, ordination methods such as principal component analysis (PCA) have been used to detect adaptive variation based on genomic data. Taking advantage of environmental data in addition to genotype data, redundancy analysis (RDA) is another ordination approach that is useful to detect adaptive variation. This study aims at proposing a test statistic based on RDA to search for loci under selection. We compare redundancy analysis to pcadapt, which is a nonconstrained ordination method, and to a latent factor mixed model (LFMM), which is a univariate genotype-environment association method. Individual-based simulations identify evolutionary scenarios where RDA genome scans have a greater statistical power than genome scans based on PCA. By constraining the analysis with environmental variables, RDA performs better than PCA in identifying adaptive variation when selection gradients are weakly correlated with population structure. In addition, we show that if RDA and LFMM have a similar power to identify genetic markers associated with environmental variables, the RDA-based procedure has the advantage to identify the main selective gradients as a combination of environmental variables. To give a concrete illustration of RDA in population genomics, we apply this method to the detection of outliers and selective gradients on an SNP data set of Populus trichocarpa (Geraldes et al., ). The RDA-based approach identifies the main selective gradient contrasting southern and coastal populations to northern and continental populations in the north-western American coast.</AbstractText>
<CopyrightInformation>© 2018 John Wiley & Sons Ltd.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Capblancq</LastName>
<ForeName>Thibaut</ForeName>
<Initials>T</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0001-5024-1302</Identifier>
<AffiliationInfo>
<Affiliation>CNRS, LECA UMR 5553, Univ. Grenoble Alpes, Grenoble, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Luu</LastName>
<ForeName>Keurcien</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>CNRS, TIMC-IMAG UMR 5525, Univ. Grenoble Alpes, Grenoble, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Blum</LastName>
<ForeName>Michael G B</ForeName>
<Initials>MGB</Initials>
<AffiliationInfo>
<Affiliation>CNRS, TIMC-IMAG UMR 5525, Univ. Grenoble Alpes, Grenoble, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bazin</LastName>
<ForeName>Eric</ForeName>
<Initials>E</Initials>
<AffiliationInfo>
<Affiliation>CNRS, LECA UMR 5553, Univ. Grenoble Alpes, Grenoble, France.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>ANR-15-CE02-0004</GrantID>
<Agency>Agence Nationale de la Recherche</Agency>
<Country></Country>
</Grant>
<Grant>
<GrantID>ANR-15-IDEX-02</GrantID>
<Agency>Agence Nationale de la Recherche</Agency>
<Country></Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>06</Month>
<Day>17</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Mol Ecol Resour</MedlineTA>
<NlmUniqueID>101465604</NlmUniqueID>
<ISSNLinking>1755-098X</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000220" MajorTopicYN="Y">Adaptation, Biological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D056808" MajorTopicYN="N">Biostatistics</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019295" MajorTopicYN="N">Computational Biology</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D056426" MajorTopicYN="N">Genetic Loci</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014644" MajorTopicYN="Y">Genetic Variation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005828" MajorTopicYN="N">Genetics, Population</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D023281" MajorTopicYN="N">Genomics</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005838" MajorTopicYN="N">Genotype</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020641" MajorTopicYN="N">Polymorphism, Single Nucleotide</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">biological adaptation</Keyword>
<Keyword MajorTopicYN="N">environmental variables</Keyword>
<Keyword MajorTopicYN="N">genome scans</Keyword>
<Keyword MajorTopicYN="N">multivariate analysis</Keyword>
<Keyword MajorTopicYN="N">redundancy analysis</Keyword>
<Keyword MajorTopicYN="N">selection</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>02</Month>
<Day>05</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2018</Year>
<Month>05</Month>
<Day>18</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>05</Month>
<Day>21</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>5</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>12</Month>
<Day>18</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>5</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">29802785</ArticleId>
<ArticleId IdType="doi">10.1111/1755-0998.12906</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>France</li>
</country>
<region>
<li>Auvergne-Rhône-Alpes</li>
<li>Rhône-Alpes</li>
</region>
<settlement>
<li>Grenoble</li>
</settlement>
</list>
<tree>
<country name="France">
<region name="Auvergne-Rhône-Alpes">
<name sortKey="Capblancq, Thibaut" sort="Capblancq, Thibaut" uniqKey="Capblancq T" first="Thibaut" last="Capblancq">Thibaut Capblancq</name>
</region>
<name sortKey="Bazin, Eric" sort="Bazin, Eric" uniqKey="Bazin E" first="Eric" last="Bazin">Eric Bazin</name>
<name sortKey="Blum, Michael G B" sort="Blum, Michael G B" uniqKey="Blum M" first="Michael G B" last="Blum">Michael G B. Blum</name>
<name sortKey="Luu, Keurcien" sort="Luu, Keurcien" uniqKey="Luu K" first="Keurcien" last="Luu">Keurcien Luu</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000F17 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000F17 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:29802785
   |texte=   Evaluation of redundancy analysis to identify signatures of local adaptation.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:29802785" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020