Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Gene network analysis of poplar root transcriptome in response to drought stress identifies a PtaJAZ3PtaRAP2.6-centered hierarchical network.

Identifieur interne : 000E81 ( Main/Exploration ); précédent : 000E80; suivant : 000E82

Gene network analysis of poplar root transcriptome in response to drought stress identifies a PtaJAZ3PtaRAP2.6-centered hierarchical network.

Auteurs : Madhumita Dash [États-Unis] ; Yordan S. Yordanov [États-Unis] ; Tatyana Georgieva [États-Unis] ; Hairong Wei [États-Unis] ; Victor Busov [États-Unis]

Source :

RBID : pubmed:30540849

Descripteurs français

English descriptors

Abstract

Using time-series transcriptomic data from poplar roots undergoing polyethylene glycol (PEG)-induced drought stress, we built a genetic network model of the involved putative molecular responses. We found that the network resembled a hierarchical structure. The highest hierarchical level in this structure is occupied by 9 genes, which we called superhubs because they were primarily connected to 18 hub genes, which are then connected to 2,934 terminal genes. We were only able to regenerate transgenic plants overexpressing two of the superhubs, suggesting that the majority of the superhubs might interfere with the regeneration process and did not allow recovery of transgenic plants. The two superhubs encode proteins with closest homology to JAZ3 and RAP2.6 genes of Arabidopsis and were consequently named PtaJAZ3 and PtaRAP2.6. PtaJAZ3 and PtaRAP2.6 overexpressing transgenic lines showed a significant increase in both root elongation and lateral root proliferation and these responses were specific for the drought stress conditions and were highly correlated with the levels of overexpression of the transgenes. Several lines of evidence suggest of regulatory interactions between the two superhubs. Both superhubs were significantly induced by methyl jasmonate (MeJA). Because jasmonate signaling involves ubiquitin-mediated proteasome degradation, treatment with proteasome inhibitor abolished the MeJA induction for both genes. PtaRAP2.6 was upregulated in PtaJAZ3 transgenics but PtaJAZ3 expression was not affected in the PtaRAP2.6 overexpressors. The discovery of the two genes and further future insights into the associated mechanisms can lead to improved understanding and novel approaches to regulate root architecture in relation to drought stress.

DOI: 10.1371/journal.pone.0208560
PubMed: 30540849
PubMed Central: PMC6291141


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Gene network analysis of poplar root transcriptome in response to drought stress identifies a PtaJAZ3PtaRAP2.6-centered hierarchical network.</title>
<author>
<name sortKey="Dash, Madhumita" sort="Dash, Madhumita" uniqKey="Dash M" first="Madhumita" last="Dash">Madhumita Dash</name>
<affiliation wicri:level="2">
<nlm:affiliation>Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI</wicri:regionArea>
<placeName>
<region type="state">Michigan</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Yordanov, Yordan S" sort="Yordanov, Yordan S" uniqKey="Yordanov Y" first="Yordan S" last="Yordanov">Yordan S. Yordanov</name>
<affiliation wicri:level="2">
<nlm:affiliation>Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI</wicri:regionArea>
<placeName>
<region type="state">Michigan</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Georgieva, Tatyana" sort="Georgieva, Tatyana" uniqKey="Georgieva T" first="Tatyana" last="Georgieva">Tatyana Georgieva</name>
<affiliation wicri:level="2">
<nlm:affiliation>Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI</wicri:regionArea>
<placeName>
<region type="state">Michigan</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Wei, Hairong" sort="Wei, Hairong" uniqKey="Wei H" first="Hairong" last="Wei">Hairong Wei</name>
<affiliation wicri:level="2">
<nlm:affiliation>Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI</wicri:regionArea>
<placeName>
<region type="state">Michigan</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Busov, Victor" sort="Busov, Victor" uniqKey="Busov V" first="Victor" last="Busov">Victor Busov</name>
<affiliation wicri:level="2">
<nlm:affiliation>Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI</wicri:regionArea>
<placeName>
<region type="state">Michigan</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:30540849</idno>
<idno type="pmid">30540849</idno>
<idno type="doi">10.1371/journal.pone.0208560</idno>
<idno type="pmc">PMC6291141</idno>
<idno type="wicri:Area/Main/Corpus">000B33</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000B33</idno>
<idno type="wicri:Area/Main/Curation">000B33</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000B33</idno>
<idno type="wicri:Area/Main/Exploration">000B33</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Gene network analysis of poplar root transcriptome in response to drought stress identifies a PtaJAZ3PtaRAP2.6-centered hierarchical network.</title>
<author>
<name sortKey="Dash, Madhumita" sort="Dash, Madhumita" uniqKey="Dash M" first="Madhumita" last="Dash">Madhumita Dash</name>
<affiliation wicri:level="2">
<nlm:affiliation>Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI</wicri:regionArea>
<placeName>
<region type="state">Michigan</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Yordanov, Yordan S" sort="Yordanov, Yordan S" uniqKey="Yordanov Y" first="Yordan S" last="Yordanov">Yordan S. Yordanov</name>
<affiliation wicri:level="2">
<nlm:affiliation>Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI</wicri:regionArea>
<placeName>
<region type="state">Michigan</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Georgieva, Tatyana" sort="Georgieva, Tatyana" uniqKey="Georgieva T" first="Tatyana" last="Georgieva">Tatyana Georgieva</name>
<affiliation wicri:level="2">
<nlm:affiliation>Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI</wicri:regionArea>
<placeName>
<region type="state">Michigan</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Wei, Hairong" sort="Wei, Hairong" uniqKey="Wei H" first="Hairong" last="Wei">Hairong Wei</name>
<affiliation wicri:level="2">
<nlm:affiliation>Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI</wicri:regionArea>
<placeName>
<region type="state">Michigan</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Busov, Victor" sort="Busov, Victor" uniqKey="Busov V" first="Victor" last="Busov">Victor Busov</name>
<affiliation wicri:level="2">
<nlm:affiliation>Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, United States of America.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI</wicri:regionArea>
<placeName>
<region type="state">Michigan</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Acetates (pharmacology)</term>
<term>Algorithms (MeSH)</term>
<term>Cyclopentanes (pharmacology)</term>
<term>Droughts (MeSH)</term>
<term>Gene Regulatory Networks (drug effects)</term>
<term>Oligonucleotide Array Sequence Analysis (MeSH)</term>
<term>Oxylipins (pharmacology)</term>
<term>Plant Proteins (genetics)</term>
<term>Plant Proteins (metabolism)</term>
<term>Plant Roots (genetics)</term>
<term>Plant Roots (growth & development)</term>
<term>Plant Roots (metabolism)</term>
<term>Plants, Genetically Modified (genetics)</term>
<term>Plants, Genetically Modified (metabolism)</term>
<term>Polyethylene Glycols (pharmacology)</term>
<term>Populus (genetics)</term>
<term>Populus (metabolism)</term>
<term>Proteasome Inhibitors (pharmacology)</term>
<term>Transcription Factors (genetics)</term>
<term>Transcription Factors (metabolism)</term>
<term>Transcriptome (drug effects)</term>
<term>Up-Regulation (drug effects)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Acétates (pharmacologie)</term>
<term>Algorithmes (MeSH)</term>
<term>Cyclopentanes (pharmacologie)</term>
<term>Facteurs de transcription (génétique)</term>
<term>Facteurs de transcription (métabolisme)</term>
<term>Inhibiteurs du protéasome (pharmacologie)</term>
<term>Oxylipines (pharmacologie)</term>
<term>Polyéthylène glycols (pharmacologie)</term>
<term>Populus (génétique)</term>
<term>Populus (métabolisme)</term>
<term>Protéines végétales (génétique)</term>
<term>Protéines végétales (métabolisme)</term>
<term>Racines de plante (croissance et développement)</term>
<term>Racines de plante (génétique)</term>
<term>Racines de plante (métabolisme)</term>
<term>Régulation positive (effets des médicaments et des substances chimiques)</term>
<term>Réseaux de régulation génique (effets des médicaments et des substances chimiques)</term>
<term>Sécheresses (MeSH)</term>
<term>Séquençage par oligonucléotides en batterie (MeSH)</term>
<term>Transcriptome (effets des médicaments et des substances chimiques)</term>
<term>Végétaux génétiquement modifiés (génétique)</term>
<term>Végétaux génétiquement modifiés (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Plant Proteins</term>
<term>Transcription Factors</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Plant Proteins</term>
<term>Transcription Factors</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Acetates</term>
<term>Cyclopentanes</term>
<term>Oxylipins</term>
<term>Polyethylene Glycols</term>
<term>Proteasome Inhibitors</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Racines de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Gene Regulatory Networks</term>
<term>Transcriptome</term>
<term>Up-Regulation</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Régulation positive</term>
<term>Réseaux de régulation génique</term>
<term>Transcriptome</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Plant Roots</term>
<term>Plants, Genetically Modified</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Plant Roots</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Facteurs de transcription</term>
<term>Populus</term>
<term>Protéines végétales</term>
<term>Racines de plante</term>
<term>Végétaux génétiquement modifiés</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Plant Roots</term>
<term>Plants, Genetically Modified</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Facteurs de transcription</term>
<term>Populus</term>
<term>Protéines végétales</term>
<term>Racines de plante</term>
<term>Végétaux génétiquement modifiés</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Acétates</term>
<term>Cyclopentanes</term>
<term>Inhibiteurs du protéasome</term>
<term>Oxylipines</term>
<term>Polyéthylène glycols</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Algorithms</term>
<term>Droughts</term>
<term>Oligonucleotide Array Sequence Analysis</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Algorithmes</term>
<term>Sécheresses</term>
<term>Séquençage par oligonucléotides en batterie</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Using time-series transcriptomic data from poplar roots undergoing polyethylene glycol (PEG)-induced drought stress, we built a genetic network model of the involved putative molecular responses. We found that the network resembled a hierarchical structure. The highest hierarchical level in this structure is occupied by 9 genes, which we called superhubs because they were primarily connected to 18 hub genes, which are then connected to 2,934 terminal genes. We were only able to regenerate transgenic plants overexpressing two of the superhubs, suggesting that the majority of the superhubs might interfere with the regeneration process and did not allow recovery of transgenic plants. The two superhubs encode proteins with closest homology to JAZ3 and RAP2.6 genes of Arabidopsis and were consequently named PtaJAZ3 and PtaRAP2.6. PtaJAZ3 and PtaRAP2.6 overexpressing transgenic lines showed a significant increase in both root elongation and lateral root proliferation and these responses were specific for the drought stress conditions and were highly correlated with the levels of overexpression of the transgenes. Several lines of evidence suggest of regulatory interactions between the two superhubs. Both superhubs were significantly induced by methyl jasmonate (MeJA). Because jasmonate signaling involves ubiquitin-mediated proteasome degradation, treatment with proteasome inhibitor abolished the MeJA induction for both genes. PtaRAP2.6 was upregulated in PtaJAZ3 transgenics but PtaJAZ3 expression was not affected in the PtaRAP2.6 overexpressors. The discovery of the two genes and further future insights into the associated mechanisms can lead to improved understanding and novel approaches to regulate root architecture in relation to drought stress.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">30540849</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>05</Month>
<Day>07</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>03</Month>
<Day>09</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>13</Volume>
<Issue>12</Issue>
<PubDate>
<Year>2018</Year>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS One</ISOAbbreviation>
</Journal>
<ArticleTitle>Gene network analysis of poplar root transcriptome in response to drought stress identifies a PtaJAZ3PtaRAP2.6-centered hierarchical network.</ArticleTitle>
<Pagination>
<MedlinePgn>e0208560</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0208560</ELocationID>
<Abstract>
<AbstractText>Using time-series transcriptomic data from poplar roots undergoing polyethylene glycol (PEG)-induced drought stress, we built a genetic network model of the involved putative molecular responses. We found that the network resembled a hierarchical structure. The highest hierarchical level in this structure is occupied by 9 genes, which we called superhubs because they were primarily connected to 18 hub genes, which are then connected to 2,934 terminal genes. We were only able to regenerate transgenic plants overexpressing two of the superhubs, suggesting that the majority of the superhubs might interfere with the regeneration process and did not allow recovery of transgenic plants. The two superhubs encode proteins with closest homology to JAZ3 and RAP2.6 genes of Arabidopsis and were consequently named PtaJAZ3 and PtaRAP2.6. PtaJAZ3 and PtaRAP2.6 overexpressing transgenic lines showed a significant increase in both root elongation and lateral root proliferation and these responses were specific for the drought stress conditions and were highly correlated with the levels of overexpression of the transgenes. Several lines of evidence suggest of regulatory interactions between the two superhubs. Both superhubs were significantly induced by methyl jasmonate (MeJA). Because jasmonate signaling involves ubiquitin-mediated proteasome degradation, treatment with proteasome inhibitor abolished the MeJA induction for both genes. PtaRAP2.6 was upregulated in PtaJAZ3 transgenics but PtaJAZ3 expression was not affected in the PtaRAP2.6 overexpressors. The discovery of the two genes and further future insights into the associated mechanisms can lead to improved understanding and novel approaches to regulate root architecture in relation to drought stress.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Dash</LastName>
<ForeName>Madhumita</ForeName>
<Initials>M</Initials>
<Identifier Source="ORCID">0000-0002-0571-3152</Identifier>
<AffiliationInfo>
<Affiliation>Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yordanov</LastName>
<ForeName>Yordan S</ForeName>
<Initials>YS</Initials>
<Identifier Source="ORCID">0000-0002-9371-2095</Identifier>
<AffiliationInfo>
<Affiliation>Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Georgieva</LastName>
<ForeName>Tatyana</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wei</LastName>
<ForeName>Hairong</ForeName>
<Initials>H</Initials>
<Identifier Source="ORCID">0000-0002-3551-4998</Identifier>
<AffiliationInfo>
<Affiliation>Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Busov</LastName>
<ForeName>Victor</ForeName>
<Initials>V</Initials>
<Identifier Source="ORCID">0000-0003-2344-1581</Identifier>
<AffiliationInfo>
<Affiliation>Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, United States of America.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>12</Month>
<Day>12</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000085">Acetates</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D003517">Cyclopentanes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054883">Oxylipins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D061988">Proteasome Inhibitors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014157">Transcription Factors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>3WJQ0SDW1A</RegistryNumber>
<NameOfSubstance UI="D011092">Polyethylene Glycols</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>900N171A0F</RegistryNumber>
<NameOfSubstance UI="C072239">methyl jasmonate</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000085" MajorTopicYN="N">Acetates</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000465" MajorTopicYN="N">Algorithms</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003517" MajorTopicYN="N">Cyclopentanes</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055864" MajorTopicYN="N">Droughts</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053263" MajorTopicYN="Y">Gene Regulatory Networks</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020411" MajorTopicYN="N">Oligonucleotide Array Sequence Analysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054883" MajorTopicYN="N">Oxylipins</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D030821" MajorTopicYN="N">Plants, Genetically Modified</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011092" MajorTopicYN="N">Polyethylene Glycols</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D061988" MajorTopicYN="N">Proteasome Inhibitors</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014157" MajorTopicYN="N">Transcription Factors</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059467" MajorTopicYN="Y">Transcriptome</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015854" MajorTopicYN="N">Up-Regulation</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
</MeshHeadingList>
<CoiStatement>The authors have declared that no competing interests exist.</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>10</Month>
<Day>01</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>11</Month>
<Day>19</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>12</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>12</Month>
<Day>13</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>5</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30540849</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0208560</ArticleId>
<ArticleId IdType="pii">PONE-D-18-28552</ArticleId>
<ArticleId IdType="pmc">PMC6291141</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Exp Bot. 2011 May;62(8):2485-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21212298</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2006 Mar 20;7 Suppl 1:S7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16723010</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Nov;151(3):1412-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19741050</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2014 Nov;34(11):1203-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24178982</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2015 Nov;27(11):3160-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26530088</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2007 Aug 08;2(8):e718</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17684564</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2010 Nov;22(11):3662-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21097711</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2007 Aug 9;448(7154):666-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17637675</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Integr Plant Biol. 2016 Jun;58(6):600-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26356550</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2015 Dec 01;6:1077</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26648959</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Sep;151(1):275-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19625633</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2013 Jan 24;493(7433):514-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23334409</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Jul;132(3):1283-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12857810</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Syst Biol. 2012 Aug 16;6:104</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22897824</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2011 Jan;75(1-2):107-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21069430</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2009;60(12):3531-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19561048</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Lett. 2007 Nov;29(11):1789-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17609860</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2013 Nov;8(11):e27211</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24300216</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2007 Aug;19(8):2470-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17675405</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biostatistics. 2003 Apr;4(2):249-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12925520</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2013 Jun 14;340(6138):1300-1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23766323</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2014 Aug;151(4):480-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24320774</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2016 May;157(1):38-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26497326</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2007 Aug 9;448(7154):661-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17637677</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2016 Jul;67(14):4209-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27217545</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2012 Jul 18;13(8):552-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22805708</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2015 Apr;20(4):219-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25731753</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2009 Oct;12(5):539-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19716757</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 2010 Jun 1;457(1-2):1-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20193749</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2013 Nov 05;4:442</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24204374</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2011 May 24;12:264</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21609476</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2008 Apr;20(4):1134-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18451323</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2013 Sep;45(9):1097-102</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23913002</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2013 Feb;23(2):365-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23064748</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2010 Nov 12;11:630</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21073700</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2000 Sep 22;289(5487):2068-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11000103</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2008 Nov 24;9:553</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19025623</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2004 Feb;37(4):589-602</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14756769</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2006 Dec 18;7:535</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17176458</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2013 Oct;200(2):483-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23795675</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2015 May;27(5):1368-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25944102</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2017 Feb;89(4):692-705</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27813246</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2009 Nov;60(4):703-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19682285</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Dec 27;102(52):18830-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16361442</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Adv. 2014 Jan-Feb;32(1):12-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24513173</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2012 Oct;160(2):1130-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22904164</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2015 Apr 21;16:329</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25895923</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2006 Jan;11(1):15-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16359910</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2015 Oct;84(2):335-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26315649</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2002 Jan;53(366):13-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11741036</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2004 Aug 27;573(1-3):83-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15327980</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Nov;154(3):1254-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20807999</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Nov;142(3):1065-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16963523</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Michigan</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Michigan">
<name sortKey="Dash, Madhumita" sort="Dash, Madhumita" uniqKey="Dash M" first="Madhumita" last="Dash">Madhumita Dash</name>
</region>
<name sortKey="Busov, Victor" sort="Busov, Victor" uniqKey="Busov V" first="Victor" last="Busov">Victor Busov</name>
<name sortKey="Georgieva, Tatyana" sort="Georgieva, Tatyana" uniqKey="Georgieva T" first="Tatyana" last="Georgieva">Tatyana Georgieva</name>
<name sortKey="Wei, Hairong" sort="Wei, Hairong" uniqKey="Wei H" first="Hairong" last="Wei">Hairong Wei</name>
<name sortKey="Yordanov, Yordan S" sort="Yordanov, Yordan S" uniqKey="Yordanov Y" first="Yordan S" last="Yordanov">Yordan S. Yordanov</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000E81 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000E81 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:30540849
   |texte=   Gene network analysis of poplar root transcriptome in response to drought stress identifies a PtaJAZ3PtaRAP2.6-centered hierarchical network.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:30540849" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020