Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Widespread antisense transcription of Populus genome under drought.

Identifieur interne : 000C03 ( Main/Exploration ); précédent : 000C02; suivant : 000C04

Widespread antisense transcription of Populus genome under drought.

Auteurs : Yinan Yuan [États-Unis] ; Su Chen [États-Unis]

Source :

RBID : pubmed:29876646

Descripteurs français

English descriptors

Abstract

Antisense transcription is widespread in many genomes and plays important regulatory roles in gene expression. The objective of our study was to investigate the extent and functional relevance of antisense transcription in forest trees. We employed Populus, a model tree species, to probe the antisense transcriptional response of tree genome under drought, through stranded RNA-seq analysis. We detected nearly 48% of annotated Populus gene loci with antisense transcripts and 44% of them with co-transcription from both DNA strands. Global distribution of reads pattern across annotated gene regions uncovered that antisense transcription was enriched in untranslated regions while sense reads were predominantly mapped in coding exons. We further detected 1185 drought-responsive sense and antisense gene loci and identified a strong positive correlation between the expression of antisense and sense transcripts. Additionally, we assessed the antisense expression in introns and found a strong correlation between intronic expression and exonic expression, confirming antisense transcription of introns contributes to transcriptional activity of Populus genome under drought. Finally, we functionally characterized drought-responsive sense-antisense transcript pairs through gene ontology analysis and discovered that functional groups including transcription factors and histones were concordantly regulated at both sense and antisense transcriptional level. Overall, our study demonstrated the extensive occurrence of antisense transcripts of Populus genes under drought and provided insights into genome structure, regulation pattern and functional significance of drought-responsive antisense genes in forest trees. Datasets generated in this study serve as a foundation for future genetic analysis to improve our understanding of gene regulation by antisense transcription.

DOI: 10.1007/s00438-018-1456-z
PubMed: 29876646


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Widespread antisense transcription of Populus genome under drought.</title>
<author>
<name sortKey="Yuan, Yinan" sort="Yuan, Yinan" uniqKey="Yuan Y" first="Yinan" last="Yuan">Yinan Yuan</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, 49931, USA. yinyuan@mtu.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>School of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, 49931</wicri:regionArea>
<wicri:noRegion>49931</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Chen, Su" sort="Chen, Su" uniqKey="Chen S" first="Su" last="Chen">Su Chen</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, 49931, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>School of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, 49931</wicri:regionArea>
<wicri:noRegion>49931</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2018">2018</date>
<idno type="RBID">pubmed:29876646</idno>
<idno type="pmid">29876646</idno>
<idno type="doi">10.1007/s00438-018-1456-z</idno>
<idno type="wicri:Area/Main/Corpus">000D99</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000D99</idno>
<idno type="wicri:Area/Main/Curation">000D99</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000D99</idno>
<idno type="wicri:Area/Main/Exploration">000D99</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Widespread antisense transcription of Populus genome under drought.</title>
<author>
<name sortKey="Yuan, Yinan" sort="Yuan, Yinan" uniqKey="Yuan Y" first="Yinan" last="Yuan">Yinan Yuan</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, 49931, USA. yinyuan@mtu.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>School of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, 49931</wicri:regionArea>
<wicri:noRegion>49931</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Chen, Su" sort="Chen, Su" uniqKey="Chen S" first="Su" last="Chen">Su Chen</name>
<affiliation wicri:level="1">
<nlm:affiliation>School of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, 49931, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>School of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, 49931</wicri:regionArea>
<wicri:noRegion>49931</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Molecular genetics and genomics : MGG</title>
<idno type="eISSN">1617-4623</idno>
<imprint>
<date when="2018" type="published">2018</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Droughts (MeSH)</term>
<term>Gene Expression Profiling (methods)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Genome, Plant (MeSH)</term>
<term>Introns (MeSH)</term>
<term>Molecular Sequence Annotation (MeSH)</term>
<term>Populus (genetics)</term>
<term>RNA, Antisense (genetics)</term>
<term>Sequence Analysis, RNA (methods)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ARN antisens (génétique)</term>
<term>Analyse de profil d'expression de gènes (méthodes)</term>
<term>Analyse de séquence d'ARN (méthodes)</term>
<term>Annotation de séquence moléculaire (MeSH)</term>
<term>Génome végétal (MeSH)</term>
<term>Introns (MeSH)</term>
<term>Populus (génétique)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Sécheresses (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>RNA, Antisense</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>ARN antisens</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Gene Expression Profiling</term>
<term>Sequence Analysis, RNA</term>
</keywords>
<keywords scheme="MESH" qualifier="méthodes" xml:lang="fr">
<term>Analyse de profil d'expression de gènes</term>
<term>Analyse de séquence d'ARN</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Droughts</term>
<term>Gene Expression Regulation, Plant</term>
<term>Genome, Plant</term>
<term>Introns</term>
<term>Molecular Sequence Annotation</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Annotation de séquence moléculaire</term>
<term>Génome végétal</term>
<term>Introns</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Sécheresses</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Antisense transcription is widespread in many genomes and plays important regulatory roles in gene expression. The objective of our study was to investigate the extent and functional relevance of antisense transcription in forest trees. We employed Populus, a model tree species, to probe the antisense transcriptional response of tree genome under drought, through stranded RNA-seq analysis. We detected nearly 48% of annotated Populus gene loci with antisense transcripts and 44% of them with co-transcription from both DNA strands. Global distribution of reads pattern across annotated gene regions uncovered that antisense transcription was enriched in untranslated regions while sense reads were predominantly mapped in coding exons. We further detected 1185 drought-responsive sense and antisense gene loci and identified a strong positive correlation between the expression of antisense and sense transcripts. Additionally, we assessed the antisense expression in introns and found a strong correlation between intronic expression and exonic expression, confirming antisense transcription of introns contributes to transcriptional activity of Populus genome under drought. Finally, we functionally characterized drought-responsive sense-antisense transcript pairs through gene ontology analysis and discovered that functional groups including transcription factors and histones were concordantly regulated at both sense and antisense transcriptional level. Overall, our study demonstrated the extensive occurrence of antisense transcripts of Populus genes under drought and provided insights into genome structure, regulation pattern and functional significance of drought-responsive antisense genes in forest trees. Datasets generated in this study serve as a foundation for future genetic analysis to improve our understanding of gene regulation by antisense transcription.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">29876646</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>03</Month>
<Day>13</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>03</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1617-4623</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>293</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2018</Year>
<Month>Aug</Month>
</PubDate>
</JournalIssue>
<Title>Molecular genetics and genomics : MGG</Title>
<ISOAbbreviation>Mol Genet Genomics</ISOAbbreviation>
</Journal>
<ArticleTitle>Widespread antisense transcription of Populus genome under drought.</ArticleTitle>
<Pagination>
<MedlinePgn>1017-1033</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00438-018-1456-z</ELocationID>
<Abstract>
<AbstractText>Antisense transcription is widespread in many genomes and plays important regulatory roles in gene expression. The objective of our study was to investigate the extent and functional relevance of antisense transcription in forest trees. We employed Populus, a model tree species, to probe the antisense transcriptional response of tree genome under drought, through stranded RNA-seq analysis. We detected nearly 48% of annotated Populus gene loci with antisense transcripts and 44% of them with co-transcription from both DNA strands. Global distribution of reads pattern across annotated gene regions uncovered that antisense transcription was enriched in untranslated regions while sense reads were predominantly mapped in coding exons. We further detected 1185 drought-responsive sense and antisense gene loci and identified a strong positive correlation between the expression of antisense and sense transcripts. Additionally, we assessed the antisense expression in introns and found a strong correlation between intronic expression and exonic expression, confirming antisense transcription of introns contributes to transcriptional activity of Populus genome under drought. Finally, we functionally characterized drought-responsive sense-antisense transcript pairs through gene ontology analysis and discovered that functional groups including transcription factors and histones were concordantly regulated at both sense and antisense transcriptional level. Overall, our study demonstrated the extensive occurrence of antisense transcripts of Populus genes under drought and provided insights into genome structure, regulation pattern and functional significance of drought-responsive antisense genes in forest trees. Datasets generated in this study serve as a foundation for future genetic analysis to improve our understanding of gene regulation by antisense transcription.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Yuan</LastName>
<ForeName>Yinan</ForeName>
<Initials>Y</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0001-6772-3623</Identifier>
<AffiliationInfo>
<Affiliation>School of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, 49931, USA. yinyuan@mtu.edu.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>Su</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>School of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, 49931, USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>2012-67014-19445</GrantID>
<Agency>the National Institute of Food and Agriculture, U.S. Department of Agriculture</Agency>
<Country></Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>06</Month>
<Day>06</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Mol Genet Genomics</MedlineTA>
<NlmUniqueID>101093320</NlmUniqueID>
<ISSNLinking>1617-4623</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D016372">RNA, Antisense</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D055864" MajorTopicYN="N">Droughts</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020869" MajorTopicYN="N">Gene Expression Profiling</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018745" MajorTopicYN="N">Genome, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007438" MajorTopicYN="N">Introns</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058977" MajorTopicYN="N">Molecular Sequence Annotation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016372" MajorTopicYN="N">RNA, Antisense</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017423" MajorTopicYN="N">Sequence Analysis, RNA</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Antisense transcripts</Keyword>
<Keyword MajorTopicYN="N">Drought</Keyword>
<Keyword MajorTopicYN="N">Functional characterization</Keyword>
<Keyword MajorTopicYN="N">Populus genome</Keyword>
<Keyword MajorTopicYN="N">Stranded RNA-seq analysis</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2017</Year>
<Month>11</Month>
<Day>01</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>05</Month>
<Day>31</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>6</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>3</Month>
<Day>14</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>6</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">29876646</ArticleId>
<ArticleId IdType="doi">10.1007/s00438-018-1456-z</ArticleId>
<ArticleId IdType="pii">10.1007/s00438-018-1456-z</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>BMC Mol Biol. 2009 Aug 11;10:81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19671135</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2008 Mar 15;22(6):756-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18347095</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2011 Mar;31(3):237-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21512097</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2016 Nov 29;113(48):E7846-E7855</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27856735</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol J. 2015 Apr;10(4):510-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25676392</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2014 Mar;24(3):444-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24402519</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genomics Proteomics Bioinformatics. 2017 Oct;15(5):301-312</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29017967</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2017 May 19;45(9):5126-5141</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28175341</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2009 Oct;37(18):e123</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19620212</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2012 Dec 22;13:721</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23259405</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2007;35(19):e128</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17897965</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2010;11(8):R87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20796282</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2015 Jul 29;6:547</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26284083</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2013 Oct;25(10):4166-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24096344</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2013 Apr 25;14(4):R36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23618408</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2010 Nov 12;11:630</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21073700</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2015 Jul;25(7):1068-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26063736</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2017 Nov;175(3):1321-1336</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28887353</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Plants. 2017 Sep;3(9):704-714</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28848233</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2009 Nov;60(4):703-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19682285</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2014 Feb 22;15:150</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24559473</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Genet Genomics. 2016 Aug;291(4):1663-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27138920</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2016 Aug 08;17:563</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27501838</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2005;6(4):R30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15833117</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2015 May 5;112(18):5785-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25902512</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2012 Oct;22(10):2008-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22722343</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2009 Aug 15;25(16):2078-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19505943</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2015 Jul;33(7):722-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26098447</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Cell Neurosci. 2015 Apr 01;9:114</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25883552</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2011 Aug;21(8):1203-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21719572</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2006;169(4):765-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16441757</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2009 Dec 10;462(7274):799-802</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20010688</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 1997 Dec;17(12):797-803</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14759889</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2016 Oct;590(20):3616-3627</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27616639</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2010 Mar 15;26(6):841-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20110278</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2005 May 1;21(9):1859-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15728110</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2017 Jan;1860(1):106-122</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27487458</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Mol Sci. 2013 Nov 18;14(11):22642-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24252906</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2015 Oct 26;211(2):243-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26504165</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(8):e43350</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22937038</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Sep 15;313(5793):1596-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16973872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2014 Nov 11;111(45):16160-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25349421</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2010 Sep;7(9):709-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20711195</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2012 Oct 15;28(20):2678-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22914218</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2011 Apr;31(8):1701-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21300780</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2014 Oct;30(19):2808-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24903420</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2015 Mar 3;112(9):E982-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25691743</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biol (Stuttg). 2010 Mar;12(2):341-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20398240</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2010 Oct;33(10):1742-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20525001</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Genomics. 2013 May;14(3):173-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24179440</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2013 Apr;161(4):2171-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23457227</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2012 Aug 15;28(16):2184-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22743226</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2013 Oct;23(10):1730-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23816784</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2004 Sep;39(6):877-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15341630</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2016 Apr;67(8):2467-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26912799</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2008 Dec 19;322(5909):1855-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19056939</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2016 Jul;36(7):909-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27174702</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Dec 22;106(51):22020-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19996170</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2014 Sep;65(17):4975-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24948679</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2009 Sep;10(9):637-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19638999</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013 Aug 06;8(8):e71847</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23936527</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>In Vitro Cell Dev Biol Plant. 2009 Dec;45(6):619-629</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19936031</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2013 Apr 09;14:233</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23570526</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2007 Jun;176(2):1299-306</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17409075</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2008;9(12):242</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19133109</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oncogene. 2004 Aug 26;23(39):6684-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15221013</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2009 Dec;32(12):1724-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19671097</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Comput Biol. 2013;9(8):e1003118</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23950696</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2013 Dec;14(12):880-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24217315</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2010;11(2):R14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20132535</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2012 Jul;79(4-5):461-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22610347</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2005;6(12):R101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16356264</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2006 Nov;48(3):321-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17005011</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2015 Jan;241(1):125-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25230698</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Sep 2;309(5740):1564-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16141073</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2014;15(12):550</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25516281</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<country name="États-Unis">
<noRegion>
<name sortKey="Yuan, Yinan" sort="Yuan, Yinan" uniqKey="Yuan Y" first="Yinan" last="Yuan">Yinan Yuan</name>
</noRegion>
<name sortKey="Chen, Su" sort="Chen, Su" uniqKey="Chen S" first="Su" last="Chen">Su Chen</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000C03 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000C03 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:29876646
   |texte=   Widespread antisense transcription of Populus genome under drought.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:29876646" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020