Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Analysis of the laccase gene family and miR397-/miR408-mediated posttranscriptional regulation in Salvia miltiorrhiza.

Identifieur interne : 000B30 ( Main/Exploration ); précédent : 000B29; suivant : 000B31

Analysis of the laccase gene family and miR397-/miR408-mediated posttranscriptional regulation in Salvia miltiorrhiza.

Auteurs : Caili Li [République populaire de Chine] ; Dongqiao Li [République populaire de Chine] ; Hong Zhou [République populaire de Chine] ; Jiang Li [République populaire de Chine] ; Shanfa Lu [République populaire de Chine]

Source :

RBID : pubmed:31528508

Abstract

Salvia miltiorrhiza is one of the most commonly used traditional Chinese medicine materials. It contains important bioactive phenolic compounds, such as salvianolic acids, flavonoids and anthocyanins. Elucidation of phenolic compound biosynthesis and its regulatory mechanism is of great significance for S. miltiorrhiza quality improvement. Laccases (LACs) are multicopper-containing enzymes potentially involved in the polymerization of phenolic compounds. So far, little has been known about LAC genes in S. miltiorrhiza. Through systematic investigation of the whole genome sequence and transcriptomes of S. miltiorrhiza, we identified 65 full-length SmLAC genes (SmLAC1-SmLAC65). Phylogenetic analysis showed that 62 of the identified SmLACs clustered with LACs from Arabidopsis and Populus trichocarpa in seven clades (C1-C7), whereas the other three fell into one S. miltiorrhiza-specific clade (C8). All of the deduced SmLAC proteins contain four conserved signature sequences and three typical Cu-oxidase domains, and gene structures of most LACs from S. miltiorrhiza, Arabidopsis and P. trichocarpa were highly conserved, however SmLACs encoding C8 proteins showed distinct intron-exon structures. It suggests the conservation and diversity of plant LACs in gene structures. The majority of SmLACs exhibited tissue-specific expression patterns, indicates manifold functions of SmLACs played in S. miltiorrhiza. Analysis of high-throughput small RNA sequences and degradome data and experimental validation using the 5' RACE method showed that 23 SmLACs were targets of Smi-miR397. Among them, three were also targeted by Smi-miR408. It suggests the significance of miR397 and miR408 in posttranscriptional regulation of SmLAC genes. Our results provide a foundation for further demonstrating the functions of SmLACs in the production of bioactive phenolic compounds in S. miltiorrhiza.

DOI: 10.7717/peerj.7605
PubMed: 31528508
PubMed Central: PMC6717658


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Analysis of the laccase gene family and miR397-/miR408-mediated posttranscriptional regulation in
<i>Salvia miltiorrhiza</i>
.</title>
<author>
<name sortKey="Li, Caili" sort="Li, Caili" uniqKey="Li C" first="Caili" last="Li">Caili Li</name>
<affiliation wicri:level="3">
<nlm:affiliation>Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Li, Dongqiao" sort="Li, Dongqiao" uniqKey="Li D" first="Dongqiao" last="Li">Dongqiao Li</name>
<affiliation wicri:level="3">
<nlm:affiliation>Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Zhou, Hong" sort="Zhou, Hong" uniqKey="Zhou H" first="Hong" last="Zhou">Hong Zhou</name>
<affiliation wicri:level="3">
<nlm:affiliation>Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Li, Jiang" sort="Li, Jiang" uniqKey="Li J" first="Jiang" last="Li">Jiang Li</name>
<affiliation wicri:level="3">
<nlm:affiliation>Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Lu, Shanfa" sort="Lu, Shanfa" uniqKey="Lu S" first="Shanfa" last="Lu">Shanfa Lu</name>
<affiliation wicri:level="3">
<nlm:affiliation>Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:31528508</idno>
<idno type="pmid">31528508</idno>
<idno type="doi">10.7717/peerj.7605</idno>
<idno type="pmc">PMC6717658</idno>
<idno type="wicri:Area/Main/Corpus">000708</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000708</idno>
<idno type="wicri:Area/Main/Curation">000708</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000708</idno>
<idno type="wicri:Area/Main/Exploration">000708</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Analysis of the laccase gene family and miR397-/miR408-mediated posttranscriptional regulation in
<i>Salvia miltiorrhiza</i>
.</title>
<author>
<name sortKey="Li, Caili" sort="Li, Caili" uniqKey="Li C" first="Caili" last="Li">Caili Li</name>
<affiliation wicri:level="3">
<nlm:affiliation>Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Li, Dongqiao" sort="Li, Dongqiao" uniqKey="Li D" first="Dongqiao" last="Li">Dongqiao Li</name>
<affiliation wicri:level="3">
<nlm:affiliation>Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Zhou, Hong" sort="Zhou, Hong" uniqKey="Zhou H" first="Hong" last="Zhou">Hong Zhou</name>
<affiliation wicri:level="3">
<nlm:affiliation>Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Li, Jiang" sort="Li, Jiang" uniqKey="Li J" first="Jiang" last="Li">Jiang Li</name>
<affiliation wicri:level="3">
<nlm:affiliation>Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Lu, Shanfa" sort="Lu, Shanfa" uniqKey="Lu S" first="Shanfa" last="Lu">Shanfa Lu</name>
<affiliation wicri:level="3">
<nlm:affiliation>Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">PeerJ</title>
<idno type="ISSN">2167-8359</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<i>Salvia miltiorrhiza</i>
is one of the most commonly used traditional Chinese medicine materials. It contains important bioactive phenolic compounds, such as salvianolic acids, flavonoids and anthocyanins. Elucidation of phenolic compound biosynthesis and its regulatory mechanism is of great significance for
<i>S. miltiorrhiza</i>
quality improvement. Laccases (LACs) are multicopper-containing enzymes potentially involved in the polymerization of phenolic compounds. So far, little has been known about
<i>LAC</i>
genes in
<i>S. miltiorrhiza</i>
. Through systematic investigation of the whole genome sequence and transcriptomes of
<i>S. miltiorrhiza</i>
, we identified 65 full-length
<i>SmLAC</i>
genes (
<i>SmLAC1</i>
-
<i>SmLAC65</i>
). Phylogenetic analysis showed that 62 of the identified SmLACs clustered with LACs from
<i>Arabidopsis</i>
and
<i>Populus trichocarpa</i>
in seven clades (C1-C7), whereas the other three fell into one
<i>S. miltiorrhiza</i>
-specific clade (C8). All of the deduced SmLAC proteins contain four conserved signature sequences and three typical Cu-oxidase domains, and gene structures of most
<i>LACs</i>
from
<i>S. miltiorrhiza</i>
,
<i>Arabidopsis</i>
and
<i>P. trichocarpa</i>
were highly conserved, however
<i>SmLACs</i>
encoding C8 proteins showed distinct intron-exon structures. It suggests the conservation and diversity of plant
<i>LACs</i>
in gene structures. The majority of
<i>SmLACs</i>
exhibited tissue-specific expression patterns, indicates manifold functions of
<i>SmLACs</i>
played in
<i>S. miltiorrhiza</i>
. Analysis of high-throughput small RNA sequences and degradome data and experimental validation using the 5' RACE method showed that 23
<i>SmLACs</i>
were targets of Smi-miR397. Among them, three were also targeted by Smi-miR408. It suggests the significance of miR397 and miR408 in posttranscriptional regulation of
<i>SmLAC</i>
genes. Our results provide a foundation for further demonstrating the functions of
<i>SmLACs</i>
in the production of bioactive phenolic compounds in
<i>S. miltiorrhiza</i>
.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">31528508</PMID>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>30</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">2167-8359</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>7</Volume>
<PubDate>
<Year>2019</Year>
</PubDate>
</JournalIssue>
<Title>PeerJ</Title>
<ISOAbbreviation>PeerJ</ISOAbbreviation>
</Journal>
<ArticleTitle>Analysis of the laccase gene family and miR397-/miR408-mediated posttranscriptional regulation in
<i>Salvia miltiorrhiza</i>
.</ArticleTitle>
<Pagination>
<MedlinePgn>e7605</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.7717/peerj.7605</ELocationID>
<Abstract>
<AbstractText>
<i>Salvia miltiorrhiza</i>
is one of the most commonly used traditional Chinese medicine materials. It contains important bioactive phenolic compounds, such as salvianolic acids, flavonoids and anthocyanins. Elucidation of phenolic compound biosynthesis and its regulatory mechanism is of great significance for
<i>S. miltiorrhiza</i>
quality improvement. Laccases (LACs) are multicopper-containing enzymes potentially involved in the polymerization of phenolic compounds. So far, little has been known about
<i>LAC</i>
genes in
<i>S. miltiorrhiza</i>
. Through systematic investigation of the whole genome sequence and transcriptomes of
<i>S. miltiorrhiza</i>
, we identified 65 full-length
<i>SmLAC</i>
genes (
<i>SmLAC1</i>
-
<i>SmLAC65</i>
). Phylogenetic analysis showed that 62 of the identified SmLACs clustered with LACs from
<i>Arabidopsis</i>
and
<i>Populus trichocarpa</i>
in seven clades (C1-C7), whereas the other three fell into one
<i>S. miltiorrhiza</i>
-specific clade (C8). All of the deduced SmLAC proteins contain four conserved signature sequences and three typical Cu-oxidase domains, and gene structures of most
<i>LACs</i>
from
<i>S. miltiorrhiza</i>
,
<i>Arabidopsis</i>
and
<i>P. trichocarpa</i>
were highly conserved, however
<i>SmLACs</i>
encoding C8 proteins showed distinct intron-exon structures. It suggests the conservation and diversity of plant
<i>LACs</i>
in gene structures. The majority of
<i>SmLACs</i>
exhibited tissue-specific expression patterns, indicates manifold functions of
<i>SmLACs</i>
played in
<i>S. miltiorrhiza</i>
. Analysis of high-throughput small RNA sequences and degradome data and experimental validation using the 5' RACE method showed that 23
<i>SmLACs</i>
were targets of Smi-miR397. Among them, three were also targeted by Smi-miR408. It suggests the significance of miR397 and miR408 in posttranscriptional regulation of
<i>SmLAC</i>
genes. Our results provide a foundation for further demonstrating the functions of
<i>SmLACs</i>
in the production of bioactive phenolic compounds in
<i>S. miltiorrhiza</i>
.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y" EqualContrib="Y">
<LastName>Li</LastName>
<ForeName>Caili</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y" EqualContrib="Y">
<LastName>Li</LastName>
<ForeName>Dongqiao</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhou</LastName>
<ForeName>Hong</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>Jiang</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Lu</LastName>
<ForeName>Shanfa</ForeName>
<Initials>S</Initials>
<Identifier Source="ORCID">0000-0001-6284-4389</Identifier>
<AffiliationInfo>
<Affiliation>Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>08</Month>
<Day>29</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PeerJ</MedlineTA>
<NlmUniqueID>101603425</NlmUniqueID>
<ISSNLinking>2167-8359</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Gene expression</Keyword>
<Keyword MajorTopicYN="N">Laccase</Keyword>
<Keyword MajorTopicYN="N">Laccase gene family</Keyword>
<Keyword MajorTopicYN="N">Phenolic compound</Keyword>
<Keyword MajorTopicYN="N">Phenolic compounds</Keyword>
<Keyword MajorTopicYN="N">Salvia miltiorrhiza</Keyword>
<Keyword MajorTopicYN="N">miR397</Keyword>
<Keyword MajorTopicYN="N">miR408</Keyword>
</KeywordList>
<CoiStatement>The authors declare that they have no competing interests.</CoiStatement>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>02</Month>
<Day>19</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>08</Month>
<Day>02</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>9</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>9</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>9</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31528508</ArticleId>
<ArticleId IdType="doi">10.7717/peerj.7605</ArticleId>
<ArticleId IdType="pii">7605</ArticleId>
<ArticleId IdType="pmc">PMC6717658</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant Mol Biol. 1999 May;40(1):23-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10394942</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2000 Jul 21;300(4):1005-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10891285</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Phytochemistry. 2002 Jul;60(6):551-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12126701</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2003 Jul 1;31(13):3406-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12824337</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1959 Apr 25;183(4669):1152-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13657039</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2004 Jun;14(6):1188-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15173120</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2005 Jul;221(5):619-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15940465</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2005 Aug;17(8):2281-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15980264</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS J. 2005 Jul;272(14):3640-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16008563</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2005 Nov;17(11):2966-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16243908</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2006 Apr 1;20(7):759-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16600909</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1992 Jul;99(3):1162-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16668984</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2006;57(11):2563-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16804053</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1993 Apr 30;260(5108):672-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17812228</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2008 Feb;9(2):102-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18197166</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Jun 6;283(23):15932-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18408011</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 2008 Aug 1;379(1):127-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18485881</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2008 Dec;20(12):3186-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19074682</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2009 Feb;10(2):141-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19145236</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2009;10(3):R25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19261174</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2009 Jul;37(Web Server issue):W202-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19458158</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2009 Aug 1;25(15):1966-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19497933</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Mol Life Sci. 2010 Feb;67(3):369-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19844659</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2011 Mar;233(3):439-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21063888</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2011 Mar;23(3):1124-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21447792</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2011 Jul;39(Web Server issue):W155-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21622958</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Rep. 2013 Jul;40(7):4301-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23644983</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2013 Jun 25;110(26):10848-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23754401</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2013 Sep;31(9):848-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23873084</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yao Xue Xue Bao. 2013 Jul;48(7):1099-106</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24133975</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2013 Oct;25(10):3976-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24143805</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2014 Oct;12(8):1132-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24975689</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2014 Oct;166(2):798-807</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25157028</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 Nov 03;9(11):e111679</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25365305</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2015 Apr 15;31(8):1296-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25504850</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2015 Mar 17;16:200</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25881056</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gigascience. 2015 Dec 14;4:62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26673920</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2016 Mar 10;6:22900</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26962011</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2016 Jul;33(7):1870-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27004904</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant. 2016 Jun 6;9(6):949-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27018390</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2016 Sep 29;6:34309</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27679939</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Mol Sci. 2017 Jan 30;18(2):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28146098</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2017 Mar 17;7:44622</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28304398</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2019 Jan;17(1):103-117</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29754465</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Molecules. 2018 Jun 16;23(6):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29914175</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 2019 Mar 20;689:114-123</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30576804</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2019 Feb 12;14(2):e0210892</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30753186</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Electrophoresis. 1994 Mar-Apr;15(3-4):529-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8055880</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
<settlement>
<li>Pékin</li>
</settlement>
</list>
<tree>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Li, Caili" sort="Li, Caili" uniqKey="Li C" first="Caili" last="Li">Caili Li</name>
</noRegion>
<name sortKey="Li, Dongqiao" sort="Li, Dongqiao" uniqKey="Li D" first="Dongqiao" last="Li">Dongqiao Li</name>
<name sortKey="Li, Jiang" sort="Li, Jiang" uniqKey="Li J" first="Jiang" last="Li">Jiang Li</name>
<name sortKey="Lu, Shanfa" sort="Lu, Shanfa" uniqKey="Lu S" first="Shanfa" last="Lu">Shanfa Lu</name>
<name sortKey="Zhou, Hong" sort="Zhou, Hong" uniqKey="Zhou H" first="Hong" last="Zhou">Hong Zhou</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000B30 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000B30 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31528508
   |texte=   Analysis of the laccase gene family and miR397-/miR408-mediated posttranscriptional regulation in Salvia miltiorrhiza.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31528508" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020