Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Comparative analysis of biocontrol agent Trichoderma asperellum ACCC30536 transcriptome during its interaction with Populus davidiana × P. alba var. pyramidalis.

Identifieur interne : 000A72 ( Main/Exploration ); précédent : 000A71; suivant : 000A73

Comparative analysis of biocontrol agent Trichoderma asperellum ACCC30536 transcriptome during its interaction with Populus davidiana × P. alba var. pyramidalis.

Auteurs : Shida Ji [République populaire de Chine] ; Zhihua Liu [République populaire de Chine] ; Bin Liu [République populaire de Chine] ; Yucheng Wang [République populaire de Chine]

Source :

RBID : pubmed:31421718

Descripteurs français

English descriptors

Abstract

After exposure to with Populus davidiana × P. alba var. pyramidalis, the expression of genes in Trichoderma asperellum were compared in four transcriptomes. The top 20 high expression genes included six heat shock proteins and three hydrophobins, indicating that Trichoderma can rapidly adapt to environment stresses and elicit a plant defense response. The genes, involved in the interaction between Trichoderma and plant, showed an increasing expression level, for example sugar transporters, EPL1s, endoxylanases, pectin lyases, and nitrilases. Interestingly, sugar transporters also showed high expression when T. asperellum was cultured on medium lacking a carbon substrate, which would contribute to T. asperellum's survival and domination in ecological niche competition. And the genes related to mycoparasitism were expressed abundantly following T. asperellum's interaction with PdPap, indicating the PdPap induction could enhance the mycoparasitic ability of T. asperellum. Twelve chitinases and five glucanases showed higher expression in transcriptome Cs, indicating that T. asperellum secretes both types of enzyme before interacting with pathogens, allowing T. asperellum to implement mycoparasitism and obtain more energy. Many novel transcripts were obtained in each transcriptome, which may play important roles in the biocontrol process of T. asperellum. Interestingly, T. asperellum undergo constitutive alternative splicing in the biocontrol process: Seven biocontrol genes were alternative spliced via intron retention. qRT-PCR analysis proved that intron retention is negatively associated with the expression of chitinase, oligopeptide transporters, and beta-lactamase. However, the percentage of MAPK intron retention was quite low, suggesting that intron retention has little effect on the function of MAPK.

DOI: 10.1016/j.micres.2019.126294
PubMed: 31421718


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Comparative analysis of biocontrol agent Trichoderma asperellum ACCC30536 transcriptome during its interaction with Populus davidiana × P. alba var. pyramidalis.</title>
<author>
<name sortKey="Ji, Shida" sort="Ji, Shida" uniqKey="Ji S" first="Shida" last="Ji">Shida Ji</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011</wicri:regionArea>
<wicri:noRegion>830011</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Liu, Zhihua" sort="Liu, Zhihua" uniqKey="Liu Z" first="Zhihua" last="Liu">Zhihua Liu</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), 26 Hexing Road, 150040, Harbin, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), 26 Hexing Road, 150040, Harbin</wicri:regionArea>
<wicri:noRegion>Harbin</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Liu, Bin" sort="Liu, Bin" uniqKey="Liu B" first="Bin" last="Liu">Bin Liu</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), 26 Hexing Road, 150040, Harbin, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), 26 Hexing Road, 150040, Harbin</wicri:regionArea>
<wicri:noRegion>Harbin</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wang, Yucheng" sort="Wang, Yucheng" uniqKey="Wang Y" first="Yucheng" last="Wang">Yucheng Wang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China; State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), 26 Hexing Road, 150040, Harbin, China. Electronic address: wangyucheng@ms.xjb.ac.cn.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China; State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), 26 Hexing Road, 150040, Harbin</wicri:regionArea>
<wicri:noRegion>Harbin</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:31421718</idno>
<idno type="pmid">31421718</idno>
<idno type="doi">10.1016/j.micres.2019.126294</idno>
<idno type="wicri:Area/Main/Corpus">000750</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000750</idno>
<idno type="wicri:Area/Main/Curation">000750</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000750</idno>
<idno type="wicri:Area/Main/Exploration">000750</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Comparative analysis of biocontrol agent Trichoderma asperellum ACCC30536 transcriptome during its interaction with Populus davidiana × P. alba var. pyramidalis.</title>
<author>
<name sortKey="Ji, Shida" sort="Ji, Shida" uniqKey="Ji S" first="Shida" last="Ji">Shida Ji</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011</wicri:regionArea>
<wicri:noRegion>830011</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Liu, Zhihua" sort="Liu, Zhihua" uniqKey="Liu Z" first="Zhihua" last="Liu">Zhihua Liu</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), 26 Hexing Road, 150040, Harbin, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), 26 Hexing Road, 150040, Harbin</wicri:regionArea>
<wicri:noRegion>Harbin</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Liu, Bin" sort="Liu, Bin" uniqKey="Liu B" first="Bin" last="Liu">Bin Liu</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), 26 Hexing Road, 150040, Harbin, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), 26 Hexing Road, 150040, Harbin</wicri:regionArea>
<wicri:noRegion>Harbin</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wang, Yucheng" sort="Wang, Yucheng" uniqKey="Wang Y" first="Yucheng" last="Wang">Yucheng Wang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China; State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), 26 Hexing Road, 150040, Harbin, China. Electronic address: wangyucheng@ms.xjb.ac.cn.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China; State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), 26 Hexing Road, 150040, Harbin</wicri:regionArea>
<wicri:noRegion>Harbin</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Microbiological research</title>
<idno type="eISSN">1618-0623</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Biological Control Agents (pharmacology)</term>
<term>Fungal Proteins (genetics)</term>
<term>Gene Expression Regulation, Fungal (MeSH)</term>
<term>Genes, Fungal (genetics)</term>
<term>Heat-Shock Proteins (genetics)</term>
<term>Host-Pathogen Interactions (genetics)</term>
<term>Host-Pathogen Interactions (physiology)</term>
<term>Plant Diseases (microbiology)</term>
<term>Populus (microbiology)</term>
<term>Stress, Physiological (genetics)</term>
<term>Transcriptome (MeSH)</term>
<term>Trichoderma (drug effects)</term>
<term>Trichoderma (genetics)</term>
<term>Trichoderma (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Agents de lutte biologique (pharmacologie)</term>
<term>Gènes fongiques (génétique)</term>
<term>Interactions hôte-pathogène (génétique)</term>
<term>Interactions hôte-pathogène (physiologie)</term>
<term>Maladies des plantes (microbiologie)</term>
<term>Populus (microbiologie)</term>
<term>Protéines du choc thermique (génétique)</term>
<term>Protéines fongiques (génétique)</term>
<term>Régulation de l'expression des gènes fongiques (MeSH)</term>
<term>Stress physiologique (génétique)</term>
<term>Transcriptome (MeSH)</term>
<term>Trichoderma (effets des médicaments et des substances chimiques)</term>
<term>Trichoderma (génétique)</term>
<term>Trichoderma (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Fungal Proteins</term>
<term>Heat-Shock Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Biological Control Agents</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Trichoderma</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Trichoderma</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Genes, Fungal</term>
<term>Host-Pathogen Interactions</term>
<term>Stress, Physiological</term>
<term>Trichoderma</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Gènes fongiques</term>
<term>Interactions hôte-pathogène</term>
<term>Protéines du choc thermique</term>
<term>Protéines fongiques</term>
<term>Stress physiologique</term>
<term>Trichoderma</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Trichoderma</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Maladies des plantes</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Plant Diseases</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Trichoderma</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Agents de lutte biologique</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Interactions hôte-pathogène</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Host-Pathogen Interactions</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Gene Expression Regulation, Fungal</term>
<term>Transcriptome</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Régulation de l'expression des gènes fongiques</term>
<term>Transcriptome</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">After exposure to with Populus davidiana × P. alba var. pyramidalis, the expression of genes in Trichoderma asperellum were compared in four transcriptomes. The top 20 high expression genes included six heat shock proteins and three hydrophobins, indicating that Trichoderma can rapidly adapt to environment stresses and elicit a plant defense response. The genes, involved in the interaction between Trichoderma and plant, showed an increasing expression level, for example sugar transporters, EPL1s, endoxylanases, pectin lyases, and nitrilases. Interestingly, sugar transporters also showed high expression when T. asperellum was cultured on medium lacking a carbon substrate, which would contribute to T. asperellum's survival and domination in ecological niche competition. And the genes related to mycoparasitism were expressed abundantly following T. asperellum's interaction with PdPap, indicating the PdPap induction could enhance the mycoparasitic ability of T. asperellum. Twelve chitinases and five glucanases showed higher expression in transcriptome Cs, indicating that T. asperellum secretes both types of enzyme before interacting with pathogens, allowing T. asperellum to implement mycoparasitism and obtain more energy. Many novel transcripts were obtained in each transcriptome, which may play important roles in the biocontrol process of T. asperellum. Interestingly, T. asperellum undergo constitutive alternative splicing in the biocontrol process: Seven biocontrol genes were alternative spliced via intron retention. qRT-PCR analysis proved that intron retention is negatively associated with the expression of chitinase, oligopeptide transporters, and beta-lactamase. However, the percentage of MAPK intron retention was quite low, suggesting that intron retention has little effect on the function of MAPK.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">31421718</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>09</Month>
<Day>23</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>09</Month>
<Day>23</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1618-0623</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>227</Volume>
<PubDate>
<Year>2019</Year>
<Month>Oct</Month>
</PubDate>
</JournalIssue>
<Title>Microbiological research</Title>
<ISOAbbreviation>Microbiol Res</ISOAbbreviation>
</Journal>
<ArticleTitle>Comparative analysis of biocontrol agent Trichoderma asperellum ACCC30536 transcriptome during its interaction with Populus davidiana × P. alba var. pyramidalis.</ArticleTitle>
<Pagination>
<MedlinePgn>126294</MedlinePgn>
</Pagination>
<ELocationID EIdType="pii" ValidYN="Y">S0944-5013(19)30418-5</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.micres.2019.126294</ELocationID>
<Abstract>
<AbstractText>After exposure to with Populus davidiana × P. alba var. pyramidalis, the expression of genes in Trichoderma asperellum were compared in four transcriptomes. The top 20 high expression genes included six heat shock proteins and three hydrophobins, indicating that Trichoderma can rapidly adapt to environment stresses and elicit a plant defense response. The genes, involved in the interaction between Trichoderma and plant, showed an increasing expression level, for example sugar transporters, EPL1s, endoxylanases, pectin lyases, and nitrilases. Interestingly, sugar transporters also showed high expression when T. asperellum was cultured on medium lacking a carbon substrate, which would contribute to T. asperellum's survival and domination in ecological niche competition. And the genes related to mycoparasitism were expressed abundantly following T. asperellum's interaction with PdPap, indicating the PdPap induction could enhance the mycoparasitic ability of T. asperellum. Twelve chitinases and five glucanases showed higher expression in transcriptome Cs, indicating that T. asperellum secretes both types of enzyme before interacting with pathogens, allowing T. asperellum to implement mycoparasitism and obtain more energy. Many novel transcripts were obtained in each transcriptome, which may play important roles in the biocontrol process of T. asperellum. Interestingly, T. asperellum undergo constitutive alternative splicing in the biocontrol process: Seven biocontrol genes were alternative spliced via intron retention. qRT-PCR analysis proved that intron retention is negatively associated with the expression of chitinase, oligopeptide transporters, and beta-lactamase. However, the percentage of MAPK intron retention was quite low, suggesting that intron retention has little effect on the function of MAPK.</AbstractText>
<CopyrightInformation>Copyright © 2019 Elsevier GmbH. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Ji</LastName>
<ForeName>Shida</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Liu</LastName>
<ForeName>Zhihua</ForeName>
<Initials>Z</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), 26 Hexing Road, 150040, Harbin, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Liu</LastName>
<ForeName>Bin</ForeName>
<Initials>B</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), 26 Hexing Road, 150040, Harbin, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wang</LastName>
<ForeName>Yucheng</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China; State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), 26 Hexing Road, 150040, Harbin, China. Electronic address: wangyucheng@ms.xjb.ac.cn.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>06</Month>
<Day>19</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Microbiol Res</MedlineTA>
<NlmUniqueID>9437794</NlmUniqueID>
<ISSNLinking>0944-5013</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D061046">Biological Control Agents</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005656">Fungal Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D006360">Heat-Shock Proteins</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D061046" MajorTopicYN="N">Biological Control Agents</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005656" MajorTopicYN="N">Fungal Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015966" MajorTopicYN="N">Gene Expression Regulation, Fungal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005800" MajorTopicYN="N">Genes, Fungal</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006360" MajorTopicYN="N">Heat-Shock Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054884" MajorTopicYN="N">Host-Pathogen Interactions</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010935" MajorTopicYN="N">Plant Diseases</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013312" MajorTopicYN="N">Stress, Physiological</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059467" MajorTopicYN="Y">Transcriptome</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014242" MajorTopicYN="N">Trichoderma</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Alternative splicing</Keyword>
<Keyword MajorTopicYN="N">Biocontrol</Keyword>
<Keyword MajorTopicYN="N">Transcriptome</Keyword>
<Keyword MajorTopicYN="N">Trichoderma asperellum</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>04</Month>
<Day>15</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2019</Year>
<Month>06</Month>
<Day>13</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>06</Month>
<Day>18</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>8</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>8</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>9</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31421718</ArticleId>
<ArticleId IdType="pii">S0944-5013(19)30418-5</ArticleId>
<ArticleId IdType="doi">10.1016/j.micres.2019.126294</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
</list>
<tree>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Ji, Shida" sort="Ji, Shida" uniqKey="Ji S" first="Shida" last="Ji">Shida Ji</name>
</noRegion>
<name sortKey="Liu, Bin" sort="Liu, Bin" uniqKey="Liu B" first="Bin" last="Liu">Bin Liu</name>
<name sortKey="Liu, Zhihua" sort="Liu, Zhihua" uniqKey="Liu Z" first="Zhihua" last="Liu">Zhihua Liu</name>
<name sortKey="Wang, Yucheng" sort="Wang, Yucheng" uniqKey="Wang Y" first="Yucheng" last="Wang">Yucheng Wang</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000A72 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000A72 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31421718
   |texte=   Comparative analysis of biocontrol agent Trichoderma asperellum ACCC30536 transcriptome during its interaction with Populus davidiana × P. alba var. pyramidalis.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31421718" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020