Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Decrypting tubby-like protein gene family of multiple functions in starch root crop cassava.

Identifieur interne : 000A41 ( Main/Exploration ); précédent : 000A40; suivant : 000A42

Decrypting tubby-like protein gene family of multiple functions in starch root crop cassava.

Auteurs : Ming-You Dong [République populaire de Chine] ; Xian-Wei Fan [République populaire de Chine] ; Xiang-Yu Pang [République populaire de Chine] ; You-Zhi Li [République populaire de Chine]

Source :

RBID : pubmed:31871614

Abstract

Tubby-like proteins (TLPs) are ubiquitous in eukaryotes and function in abiotic stress tolerance of some plants. Cassava (Manihot esculenta Crantz) is a high-yield starch root crop and has a high tolerance to poor soil conditions and abiotic stress. However, little is known about TLP gene characteristics and their expression in cassava. We identified cassava TLP genes, MeTLPs, and further analysed structure, duplication, chromosome localization and collinearity, cis-acting elements in the promoter regions and expression patterns of MeTLPs, and three-dimensional structure of the encoded proteins MeTLPs. In conclusion, there is a MeTLP family containing 13 members, which are grouped into A and C subfamilies. There are 11 pairs of MeTLPs that show the duplication which took place between 10.11 and 126.69 million years ago. Two MeTLPs 6 and 9 likely originate from one gene in an ancestral species, may be common ancestors for other MeTLPs and would most likely not be eligible for ubiquitin-related protein degradation because their corresponding proteins (MeTLPs 6 and 9) have no the F-box domain in the N-terminus. MeTLPs feature differences in the number from TLPs in wheat, apple, Arabidopsis, poplar and maize, and are highlighted by segmental duplication but more importantly by the chromosomal collinearity with potato StTLPs. MeTLPs are at least related to abiotic stress tolerance in cassava. However, the subtle differences in function among MeTLPs are predictable partly because of their differential expression profiles, which are coupled with various cis‑acting elements existing in the promoter regions depending on genes.

DOI: 10.1093/aobpla/plz075
PubMed: 31871614
PubMed Central: PMC6920310


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Decrypting tubby-like protein gene family of multiple functions in starch root crop cassava.</title>
<author>
<name sortKey="Dong, Ming You" sort="Dong, Ming You" uniqKey="Dong M" first="Ming-You" last="Dong">Ming-You Dong</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi</wicri:regionArea>
<wicri:noRegion>Guangxi</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Fan, Xian Wei" sort="Fan, Xian Wei" uniqKey="Fan X" first="Xian-Wei" last="Fan">Xian-Wei Fan</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi</wicri:regionArea>
<wicri:noRegion>Guangxi</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Pang, Xiang Yu" sort="Pang, Xiang Yu" uniqKey="Pang X" first="Xiang-Yu" last="Pang">Xiang-Yu Pang</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi</wicri:regionArea>
<wicri:noRegion>Guangxi</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Li, You Zhi" sort="Li, You Zhi" uniqKey="Li Y" first="You-Zhi" last="Li">You-Zhi Li</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi</wicri:regionArea>
<wicri:noRegion>Guangxi</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:31871614</idno>
<idno type="pmid">31871614</idno>
<idno type="doi">10.1093/aobpla/plz075</idno>
<idno type="pmc">PMC6920310</idno>
<idno type="wicri:Area/Main/Corpus">000548</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000548</idno>
<idno type="wicri:Area/Main/Curation">000548</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000548</idno>
<idno type="wicri:Area/Main/Exploration">000548</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Decrypting tubby-like protein gene family of multiple functions in starch root crop cassava.</title>
<author>
<name sortKey="Dong, Ming You" sort="Dong, Ming You" uniqKey="Dong M" first="Ming-You" last="Dong">Ming-You Dong</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi</wicri:regionArea>
<wicri:noRegion>Guangxi</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Fan, Xian Wei" sort="Fan, Xian Wei" uniqKey="Fan X" first="Xian-Wei" last="Fan">Xian-Wei Fan</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi</wicri:regionArea>
<wicri:noRegion>Guangxi</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Pang, Xiang Yu" sort="Pang, Xiang Yu" uniqKey="Pang X" first="Xiang-Yu" last="Pang">Xiang-Yu Pang</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi</wicri:regionArea>
<wicri:noRegion>Guangxi</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Li, You Zhi" sort="Li, You Zhi" uniqKey="Li Y" first="You-Zhi" last="Li">You-Zhi Li</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi</wicri:regionArea>
<wicri:noRegion>Guangxi</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">AoB PLANTS</title>
<idno type="ISSN">2041-2851</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Tubby-like proteins (TLPs) are ubiquitous in eukaryotes and function in abiotic stress tolerance of some plants. Cassava (
<i>Manihot esculenta</i>
Crantz) is a high-yield starch root crop and has a high tolerance to poor soil conditions and abiotic stress. However, little is known about TLP gene characteristics and their expression in cassava. We identified cassava TLP genes,
<i>MeTLP</i>
s, and further analysed structure, duplication, chromosome localization and collinearity,
<i>cis</i>
-acting elements in the promoter regions and expression patterns of
<i>MeTLP</i>
s, and three-dimensional structure of the encoded proteins MeTLPs. In conclusion, there is a
<i>MeTLP</i>
family containing 13 members, which are grouped into A and C subfamilies. There are 11 pairs of
<i>MeTLP</i>
s that show the duplication which took place between 10.11 and 126.69 million years ago. Two
<i>MeTLP</i>
s
<i>6</i>
and
<i>9</i>
likely originate from one gene in an ancestral species, may be common ancestors for other
<i>MeTLP</i>
s and would most likely not be eligible for ubiquitin-related protein degradation because their corresponding proteins (MeTLPs 6 and 9) have no the F-box domain in the N-terminus.
<i>MeTLP</i>
s feature differences in the number from
<i>TLP</i>
s in wheat, apple,
<i>Arabidopsis</i>
, poplar and maize, and are highlighted by segmental duplication but more importantly by the chromosomal collinearity with potato
<i>StTLP</i>
s.
<i>MeTLP</i>
s are at least related to abiotic stress tolerance in cassava. However, the subtle differences in function among
<i>MeTLP</i>
s are predictable partly because of their differential expression profiles, which are coupled with various
<i>cis</i>
‑acting elements existing in the promoter regions depending on genes.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">31871614</PMID>
<DateRevised>
<Year>2020</Year>
<Month>10</Month>
<Day>01</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">2041-2851</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>11</Volume>
<Issue>6</Issue>
<PubDate>
<Year>2019</Year>
<Month>Dec</Month>
</PubDate>
</JournalIssue>
<Title>AoB PLANTS</Title>
<ISOAbbreviation>AoB Plants</ISOAbbreviation>
</Journal>
<ArticleTitle>Decrypting tubby-like protein gene family of multiple functions in starch root crop cassava.</ArticleTitle>
<Pagination>
<MedlinePgn>plz075</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1093/aobpla/plz075</ELocationID>
<Abstract>
<AbstractText>Tubby-like proteins (TLPs) are ubiquitous in eukaryotes and function in abiotic stress tolerance of some plants. Cassava (
<i>Manihot esculenta</i>
Crantz) is a high-yield starch root crop and has a high tolerance to poor soil conditions and abiotic stress. However, little is known about TLP gene characteristics and their expression in cassava. We identified cassava TLP genes,
<i>MeTLP</i>
s, and further analysed structure, duplication, chromosome localization and collinearity,
<i>cis</i>
-acting elements in the promoter regions and expression patterns of
<i>MeTLP</i>
s, and three-dimensional structure of the encoded proteins MeTLPs. In conclusion, there is a
<i>MeTLP</i>
family containing 13 members, which are grouped into A and C subfamilies. There are 11 pairs of
<i>MeTLP</i>
s that show the duplication which took place between 10.11 and 126.69 million years ago. Two
<i>MeTLP</i>
s
<i>6</i>
and
<i>9</i>
likely originate from one gene in an ancestral species, may be common ancestors for other
<i>MeTLP</i>
s and would most likely not be eligible for ubiquitin-related protein degradation because their corresponding proteins (MeTLPs 6 and 9) have no the F-box domain in the N-terminus.
<i>MeTLP</i>
s feature differences in the number from
<i>TLP</i>
s in wheat, apple,
<i>Arabidopsis</i>
, poplar and maize, and are highlighted by segmental duplication but more importantly by the chromosomal collinearity with potato
<i>StTLP</i>
s.
<i>MeTLP</i>
s are at least related to abiotic stress tolerance in cassava. However, the subtle differences in function among
<i>MeTLP</i>
s are predictable partly because of their differential expression profiles, which are coupled with various
<i>cis</i>
‑acting elements existing in the promoter regions depending on genes.</AbstractText>
<CopyrightInformation>© The Author(s) 2019. Published by Oxford University Press on behalf of the Annals of Botany Company.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Dong</LastName>
<ForeName>Ming-You</ForeName>
<Initials>MY</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Fan</LastName>
<ForeName>Xian-Wei</ForeName>
<Initials>XW</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Pang</LastName>
<ForeName>Xiang-Yu</ForeName>
<Initials>XY</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Li</LastName>
<ForeName>You-Zhi</ForeName>
<Initials>YZ</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, China.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>11</Month>
<Day>25</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>AoB Plants</MedlineTA>
<NlmUniqueID>101539425</NlmUniqueID>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Cassava</Keyword>
<Keyword MajorTopicYN="N">evolution</Keyword>
<Keyword MajorTopicYN="N">gene expression</Keyword>
<Keyword MajorTopicYN="N">growth and development</Keyword>
<Keyword MajorTopicYN="N">proteins</Keyword>
<Keyword MajorTopicYN="N">stress tolerance</Keyword>
<Keyword MajorTopicYN="N">tubby-like protein gene family</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>06</Month>
<Day>06</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>11</Month>
<Day>24</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>12</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>12</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>12</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31871614</ArticleId>
<ArticleId IdType="doi">10.1093/aobpla/plz075</ArticleId>
<ArticleId IdType="pii">plz075</ArticleId>
<ArticleId IdType="pmc">PMC6920310</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant Cell Physiol. 2017 May 1;58(5):962-975</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28340173</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2016 Feb 05;7:25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26904033</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2011 Jul;39(Web Server issue):W29-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21593126</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Proteomics. 2007 Nov;6(11):1868-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17686759</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2007 Jun;50(5):873-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17470057</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2016 May 19;7:680</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27242878</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2011 Aug 04;12:323</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21816040</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2014 Nov;86(4-5):471-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25168737</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2013 Dec;30(12):2725-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24132122</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 2018 Feb 5;642:16-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29109004</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Hered. 1990 Nov-Dec;81(6):424-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2250094</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Genet Genomics. 2013 Nov;288(11):559-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23928825</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2000 Sep;44(2):123-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11117256</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 2002 May;27(5):235-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12076535</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Genet Syst. 2015;90(5):293-304</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26860054</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteins. 2006 Aug 15;64(3):643-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16752418</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2007 Nov 1;23(21):2947-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17846036</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genomics Proteomics Bioinformatics. 2010 Mar;8(1):77-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20451164</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2012 Apr;40(7):e49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22217600</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2000 Jun;5(6):246-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10838615</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>AoB Plants. 2014 May 21;6:null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24887001</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Aug 20;99(17):11519-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12169662</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2012 Mar 01;7(3):562-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22383036</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Mol Life Sci. 2016 Feb;73(4):797-810</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26598281</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2016 Nov 14;7:1693</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27895653</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Mol Life Sci. 2008 Jul;65(13):1977-2000</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18344020</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2015 Jul 1;43(W1):W39-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25953851</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2017 Mar;213(4):1632-1641</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28116755</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Apr;134(4):1586-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15064372</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2013 Jul;32(7):985-1006</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23508256</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Prog Biophys Mol Biol. 1999;72(3):299-328</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10581972</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2009 Jan;28(1):113-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18818927</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 2001 Jul 25;273(1):131-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11483369</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Mol Sci. 2019 Aug 19;20(16):null</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31430902</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2019 Jan 8;47(D1):D351-D360</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30398656</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2014 Oct;30(19):2811-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24930139</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2001 Jun 15;292(5524):2041-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11375483</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2012 Mar 23;419(4):779-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22390928</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2014 Mar 7;445(2):394-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24525118</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS J. 2008 Jan;275(1):163-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18070109</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genet Mol Res. 2014 Aug 28;13(3):6683-700</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25177949</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1997 Apr 1;94(7):3128-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9096357</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMB Rep. 2017 Jan;50(1):37-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27697107</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1996 Apr 19;85(2):281-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8612280</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Dec 23;100(26):15682-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14671323</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2016 Jan 4;44(D1):D279-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26673716</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods. 2001 Dec;25(4):402-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11846609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2017 Jan 4;45(D1):D200-D203</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27899674</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2019 Feb 6;19(1):60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30727953</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2018 Jun 25;19(1):490</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29940851</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2012 Jul;40(Web Server issue):W597-603</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22661580</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2019 Mar;249(3):815-829</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30411169</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Rep. 2016 Mar 07;6:22783</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26947924</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1996 Apr 11;380(6574):534-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8606774</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2012 Jul;79(4-5):479-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22644439</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Genet. 1998 Jun;14(6):236-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9635407</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2002 Jan 1;30(1):325-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11752327</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2000 Oct;17(10):1483-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11018155</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genomics. 2008 Oct;92(4):246-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18620041</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
</list>
<tree>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Dong, Ming You" sort="Dong, Ming You" uniqKey="Dong M" first="Ming-You" last="Dong">Ming-You Dong</name>
</noRegion>
<name sortKey="Fan, Xian Wei" sort="Fan, Xian Wei" uniqKey="Fan X" first="Xian-Wei" last="Fan">Xian-Wei Fan</name>
<name sortKey="Li, You Zhi" sort="Li, You Zhi" uniqKey="Li Y" first="You-Zhi" last="Li">You-Zhi Li</name>
<name sortKey="Pang, Xiang Yu" sort="Pang, Xiang Yu" uniqKey="Pang X" first="Xiang-Yu" last="Pang">Xiang-Yu Pang</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000A41 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000A41 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31871614
   |texte=   Decrypting tubby-like protein gene family of multiple functions in starch root crop cassava.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31871614" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020