Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Pseudomonas fluorescens increases mycorrhization and modulates expression of antifungal defense response genes in roots of aspen seedlings.

Identifieur interne : 000750 ( Main/Exploration ); précédent : 000749; suivant : 000751

Pseudomonas fluorescens increases mycorrhization and modulates expression of antifungal defense response genes in roots of aspen seedlings.

Auteurs : Shalaka Shinde [États-Unis] ; Sarah Zerbs [États-Unis] ; Frank R. Collart [États-Unis] ; Jonathan R. Cumming [États-Unis] ; Philippe Noirot [États-Unis] ; Peter E. Larsen [États-Unis]

Source :

RBID : pubmed:30606121

Descripteurs français

English descriptors

Abstract

BACKGROUND

Plants, fungi, and bacteria form complex, mutually-beneficial communities within the soil environment. In return for photosynthetically derived sugars in the form of exudates from plant roots, the microbial symbionts in these rhizosphere communities provide their host plants access to otherwise inaccessible nutrients in soils and help defend the plant against biotic and abiotic stresses. One role that bacteria may play in these communities is that of Mycorrhizal Helper Bacteria (MHB). MHB are bacteria that facilitate the interactions between plant roots and symbiotic mycorrhizal fungi and, while the effects of MHB on the formation of plant-fungal symbiosis and on plant health have been well documented, the specific molecular mechanisms by which MHB drive gene regulation in plant roots leading to these benefits remain largely uncharacterized.

RESULTS

Here, we investigate the effects of the bacterium Pseudomonas fluorescens SBW25 (SBW25) on aspen root transcriptome using a tripartite laboratory community comprised of Populus tremuloides (aspen) seedlings and the ectomycorrhizal fungus Laccaria bicolor (Laccaria). We show that SBW25 has MHB activity and promotes mycorrhization of aspen roots by Laccaria. Using transcriptomic analysis of aspen roots under multiple community compositions, we identify clusters of co-regulated genes associated with mycorrhization, the presence of SBW25, and MHB-associated functions, and we generate a combinatorial logic network that links causal relationships in observed patterns of gene expression in aspen seedling roots in a single Boolean circuit diagram. The predicted regulatory circuit is used to infer regulatory mechanisms associated with MHB activity.

CONCLUSIONS

In our laboratory conditions, SBW25 increases the ability of Laccaria to form ectomycorrhizal interactions with aspen seedling roots through the suppression of aspen root antifungal defense responses. Analysis of transcriptomic data identifies that potential molecular mechanisms in aspen roots that respond to MHB activity are proteins with homology to pollen recognition sensors. Pollen recognition sensors integrate multiple environmental signals to down-regulate pollenization-associated gene clusters, making proteins with homology to this system an excellent fit for a predicted mechanism that integrates information from the rhizosphere to down-regulate antifungal defense response genes in the root. These results provide a deeper understanding of aspen gene regulation in response to MHB and suggest additional, hypothesis-driven biological experiments to validate putative molecular mechanisms of MHB activity in the aspen-Laccaria ectomycorrhizal symbiosis.


DOI: 10.1186/s12870-018-1610-0
PubMed: 30606121
PubMed Central: PMC6318872


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Pseudomonas fluorescens increases mycorrhization and modulates expression of antifungal defense response genes in roots of aspen seedlings.</title>
<author>
<name sortKey="Shinde, Shalaka" sort="Shinde, Shalaka" uniqKey="Shinde S" first="Shalaka" last="Shinde">Shalaka Shinde</name>
<affiliation wicri:level="1">
<nlm:affiliation>Argonne National Laboratory, Biosciences Division, 9700 S. Cass Ave., Argonne, IL, 60439, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Argonne National Laboratory, Biosciences Division, 9700 S. Cass Ave., Argonne, IL, 60439</wicri:regionArea>
<wicri:noRegion>60439</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Present address: Oil-Dri Innovation Center, 777 Forest Edge Rd., Vernon Hills, IL, 60061, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Present address: Oil-Dri Innovation Center, 777 Forest Edge Rd., Vernon Hills, IL, 60061</wicri:regionArea>
<wicri:noRegion>60061</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zerbs, Sarah" sort="Zerbs, Sarah" uniqKey="Zerbs S" first="Sarah" last="Zerbs">Sarah Zerbs</name>
<affiliation wicri:level="1">
<nlm:affiliation>Argonne National Laboratory, Biosciences Division, 9700 S. Cass Ave., Argonne, IL, 60439, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Argonne National Laboratory, Biosciences Division, 9700 S. Cass Ave., Argonne, IL, 60439</wicri:regionArea>
<wicri:noRegion>60439</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Collart, Frank R" sort="Collart, Frank R" uniqKey="Collart F" first="Frank R" last="Collart">Frank R. Collart</name>
<affiliation wicri:level="1">
<nlm:affiliation>Argonne National Laboratory, Biosciences Division, 9700 S. Cass Ave., Argonne, IL, 60439, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Argonne National Laboratory, Biosciences Division, 9700 S. Cass Ave., Argonne, IL, 60439</wicri:regionArea>
<wicri:noRegion>60439</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Cumming, Jonathan R" sort="Cumming, Jonathan R" uniqKey="Cumming J" first="Jonathan R" last="Cumming">Jonathan R. Cumming</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biology, West Virginia University, 53 Campus Dr, Morgantown, WV, 26506, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology, West Virginia University, 53 Campus Dr, Morgantown, WV, 26506</wicri:regionArea>
<wicri:noRegion>26506</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Noirot, Philippe" sort="Noirot, Philippe" uniqKey="Noirot P" first="Philippe" last="Noirot">Philippe Noirot</name>
<affiliation wicri:level="1">
<nlm:affiliation>Argonne National Laboratory, Biosciences Division, 9700 S. Cass Ave., Argonne, IL, 60439, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Argonne National Laboratory, Biosciences Division, 9700 S. Cass Ave., Argonne, IL, 60439</wicri:regionArea>
<wicri:noRegion>60439</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Larsen, Peter E" sort="Larsen, Peter E" uniqKey="Larsen P" first="Peter E" last="Larsen">Peter E. Larsen</name>
<affiliation wicri:level="1">
<nlm:affiliation>Argonne National Laboratory, Biosciences Division, 9700 S. Cass Ave., Argonne, IL, 60439, USA. plarsen@anl.gov.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Argonne National Laboratory, Biosciences Division, 9700 S. Cass Ave., Argonne, IL, 60439</wicri:regionArea>
<wicri:noRegion>60439</wicri:noRegion>
</affiliation>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Bioengineering, University of Illinois at Chicago, 851 South Morgan St., Chicago, IL, 60612, USA. plarsen@anl.gov.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Bioengineering, University of Illinois at Chicago, 851 South Morgan St., Chicago, IL, 60612</wicri:regionArea>
<orgName type="university">Université de l'Illinois à Chicago</orgName>
<placeName>
<settlement type="city">Chicago</settlement>
<region type="state">Illinois</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:30606121</idno>
<idno type="pmid">30606121</idno>
<idno type="doi">10.1186/s12870-018-1610-0</idno>
<idno type="pmc">PMC6318872</idno>
<idno type="wicri:Area/Main/Corpus">000A98</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000A98</idno>
<idno type="wicri:Area/Main/Curation">000A98</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000A98</idno>
<idno type="wicri:Area/Main/Exploration">000A98</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Pseudomonas fluorescens increases mycorrhization and modulates expression of antifungal defense response genes in roots of aspen seedlings.</title>
<author>
<name sortKey="Shinde, Shalaka" sort="Shinde, Shalaka" uniqKey="Shinde S" first="Shalaka" last="Shinde">Shalaka Shinde</name>
<affiliation wicri:level="1">
<nlm:affiliation>Argonne National Laboratory, Biosciences Division, 9700 S. Cass Ave., Argonne, IL, 60439, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Argonne National Laboratory, Biosciences Division, 9700 S. Cass Ave., Argonne, IL, 60439</wicri:regionArea>
<wicri:noRegion>60439</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Present address: Oil-Dri Innovation Center, 777 Forest Edge Rd., Vernon Hills, IL, 60061, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Present address: Oil-Dri Innovation Center, 777 Forest Edge Rd., Vernon Hills, IL, 60061</wicri:regionArea>
<wicri:noRegion>60061</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zerbs, Sarah" sort="Zerbs, Sarah" uniqKey="Zerbs S" first="Sarah" last="Zerbs">Sarah Zerbs</name>
<affiliation wicri:level="1">
<nlm:affiliation>Argonne National Laboratory, Biosciences Division, 9700 S. Cass Ave., Argonne, IL, 60439, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Argonne National Laboratory, Biosciences Division, 9700 S. Cass Ave., Argonne, IL, 60439</wicri:regionArea>
<wicri:noRegion>60439</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Collart, Frank R" sort="Collart, Frank R" uniqKey="Collart F" first="Frank R" last="Collart">Frank R. Collart</name>
<affiliation wicri:level="1">
<nlm:affiliation>Argonne National Laboratory, Biosciences Division, 9700 S. Cass Ave., Argonne, IL, 60439, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Argonne National Laboratory, Biosciences Division, 9700 S. Cass Ave., Argonne, IL, 60439</wicri:regionArea>
<wicri:noRegion>60439</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Cumming, Jonathan R" sort="Cumming, Jonathan R" uniqKey="Cumming J" first="Jonathan R" last="Cumming">Jonathan R. Cumming</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biology, West Virginia University, 53 Campus Dr, Morgantown, WV, 26506, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biology, West Virginia University, 53 Campus Dr, Morgantown, WV, 26506</wicri:regionArea>
<wicri:noRegion>26506</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Noirot, Philippe" sort="Noirot, Philippe" uniqKey="Noirot P" first="Philippe" last="Noirot">Philippe Noirot</name>
<affiliation wicri:level="1">
<nlm:affiliation>Argonne National Laboratory, Biosciences Division, 9700 S. Cass Ave., Argonne, IL, 60439, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Argonne National Laboratory, Biosciences Division, 9700 S. Cass Ave., Argonne, IL, 60439</wicri:regionArea>
<wicri:noRegion>60439</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Larsen, Peter E" sort="Larsen, Peter E" uniqKey="Larsen P" first="Peter E" last="Larsen">Peter E. Larsen</name>
<affiliation wicri:level="1">
<nlm:affiliation>Argonne National Laboratory, Biosciences Division, 9700 S. Cass Ave., Argonne, IL, 60439, USA. plarsen@anl.gov.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Argonne National Laboratory, Biosciences Division, 9700 S. Cass Ave., Argonne, IL, 60439</wicri:regionArea>
<wicri:noRegion>60439</wicri:noRegion>
</affiliation>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Bioengineering, University of Illinois at Chicago, 851 South Morgan St., Chicago, IL, 60612, USA. plarsen@anl.gov.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Bioengineering, University of Illinois at Chicago, 851 South Morgan St., Chicago, IL, 60612</wicri:regionArea>
<orgName type="university">Université de l'Illinois à Chicago</orgName>
<placeName>
<settlement type="city">Chicago</settlement>
<region type="state">Illinois</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">BMC plant biology</title>
<idno type="eISSN">1471-2229</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Gene Regulatory Networks (genetics)</term>
<term>Laccaria (genetics)</term>
<term>Laccaria (metabolism)</term>
<term>Mycorrhizae (growth & development)</term>
<term>Plant Immunity (genetics)</term>
<term>Plant Roots (genetics)</term>
<term>Plant Roots (metabolism)</term>
<term>Plant Roots (microbiology)</term>
<term>Populus (genetics)</term>
<term>Populus (metabolism)</term>
<term>Populus (microbiology)</term>
<term>Pseudomonas fluorescens (genetics)</term>
<term>Pseudomonas fluorescens (metabolism)</term>
<term>RNA, Bacterial (genetics)</term>
<term>RNA, Fungal (genetics)</term>
<term>RNA, Plant (genetics)</term>
<term>Seedlings (immunology)</term>
<term>Seedlings (metabolism)</term>
<term>Seedlings (microbiology)</term>
<term>Sequence Alignment (MeSH)</term>
<term>Symbiosis (MeSH)</term>
<term>Transcriptome (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ARN bactérien (génétique)</term>
<term>ARN des plantes (génétique)</term>
<term>ARN fongique (génétique)</term>
<term>Alignement de séquences (MeSH)</term>
<term>Immunité des plantes (génétique)</term>
<term>Laccaria (génétique)</term>
<term>Laccaria (métabolisme)</term>
<term>Mycorhizes (croissance et développement)</term>
<term>Plant (immunologie)</term>
<term>Plant (microbiologie)</term>
<term>Plant (métabolisme)</term>
<term>Populus (génétique)</term>
<term>Populus (microbiologie)</term>
<term>Populus (métabolisme)</term>
<term>Pseudomonas fluorescens (génétique)</term>
<term>Pseudomonas fluorescens (métabolisme)</term>
<term>Racines de plante (génétique)</term>
<term>Racines de plante (microbiologie)</term>
<term>Racines de plante (métabolisme)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Réseaux de régulation génique (génétique)</term>
<term>Symbiose (MeSH)</term>
<term>Transcriptome (génétique)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>RNA, Bacterial</term>
<term>RNA, Fungal</term>
<term>RNA, Plant</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Mycorhizes</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Gene Regulatory Networks</term>
<term>Laccaria</term>
<term>Plant Immunity</term>
<term>Plant Roots</term>
<term>Populus</term>
<term>Pseudomonas fluorescens</term>
<term>Transcriptome</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Mycorrhizae</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>ARN bactérien</term>
<term>ARN des plantes</term>
<term>ARN fongique</term>
<term>Immunité des plantes</term>
<term>Laccaria</term>
<term>Populus</term>
<term>Pseudomonas fluorescens</term>
<term>Racines de plante</term>
<term>Réseaux de régulation génique</term>
<term>Transcriptome</term>
</keywords>
<keywords scheme="MESH" qualifier="immunologie" xml:lang="fr">
<term>Plant</term>
</keywords>
<keywords scheme="MESH" qualifier="immunology" xml:lang="en">
<term>Seedlings</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Laccaria</term>
<term>Plant Roots</term>
<term>Populus</term>
<term>Pseudomonas fluorescens</term>
<term>Seedlings</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Plant</term>
<term>Populus</term>
<term>Racines de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Plant Roots</term>
<term>Populus</term>
<term>Seedlings</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Laccaria</term>
<term>Plant</term>
<term>Populus</term>
<term>Pseudomonas fluorescens</term>
<term>Racines de plante</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Gene Expression Regulation, Plant</term>
<term>Sequence Alignment</term>
<term>Symbiosis</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Alignement de séquences</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Symbiose</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>Plants, fungi, and bacteria form complex, mutually-beneficial communities within the soil environment. In return for photosynthetically derived sugars in the form of exudates from plant roots, the microbial symbionts in these rhizosphere communities provide their host plants access to otherwise inaccessible nutrients in soils and help defend the plant against biotic and abiotic stresses. One role that bacteria may play in these communities is that of Mycorrhizal Helper Bacteria (MHB). MHB are bacteria that facilitate the interactions between plant roots and symbiotic mycorrhizal fungi and, while the effects of MHB on the formation of plant-fungal symbiosis and on plant health have been well documented, the specific molecular mechanisms by which MHB drive gene regulation in plant roots leading to these benefits remain largely uncharacterized.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>RESULTS</b>
</p>
<p>Here, we investigate the effects of the bacterium Pseudomonas fluorescens SBW25 (SBW25) on aspen root transcriptome using a tripartite laboratory community comprised of Populus tremuloides (aspen) seedlings and the ectomycorrhizal fungus Laccaria bicolor (Laccaria). We show that SBW25 has MHB activity and promotes mycorrhization of aspen roots by Laccaria. Using transcriptomic analysis of aspen roots under multiple community compositions, we identify clusters of co-regulated genes associated with mycorrhization, the presence of SBW25, and MHB-associated functions, and we generate a combinatorial logic network that links causal relationships in observed patterns of gene expression in aspen seedling roots in a single Boolean circuit diagram. The predicted regulatory circuit is used to infer regulatory mechanisms associated with MHB activity.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS</b>
</p>
<p>In our laboratory conditions, SBW25 increases the ability of Laccaria to form ectomycorrhizal interactions with aspen seedling roots through the suppression of aspen root antifungal defense responses. Analysis of transcriptomic data identifies that potential molecular mechanisms in aspen roots that respond to MHB activity are proteins with homology to pollen recognition sensors. Pollen recognition sensors integrate multiple environmental signals to down-regulate pollenization-associated gene clusters, making proteins with homology to this system an excellent fit for a predicted mechanism that integrates information from the rhizosphere to down-regulate antifungal defense response genes in the root. These results provide a deeper understanding of aspen gene regulation in response to MHB and suggest additional, hypothesis-driven biological experiments to validate putative molecular mechanisms of MHB activity in the aspen-Laccaria ectomycorrhizal symbiosis.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">30606121</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>02</Month>
<Day>19</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>02</Month>
<Day>25</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1471-2229</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>19</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2019</Year>
<Month>Jan</Month>
<Day>03</Day>
</PubDate>
</JournalIssue>
<Title>BMC plant biology</Title>
<ISOAbbreviation>BMC Plant Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>Pseudomonas fluorescens increases mycorrhization and modulates expression of antifungal defense response genes in roots of aspen seedlings.</ArticleTitle>
<Pagination>
<MedlinePgn>4</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1186/s12870-018-1610-0</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">Plants, fungi, and bacteria form complex, mutually-beneficial communities within the soil environment. In return for photosynthetically derived sugars in the form of exudates from plant roots, the microbial symbionts in these rhizosphere communities provide their host plants access to otherwise inaccessible nutrients in soils and help defend the plant against biotic and abiotic stresses. One role that bacteria may play in these communities is that of Mycorrhizal Helper Bacteria (MHB). MHB are bacteria that facilitate the interactions between plant roots and symbiotic mycorrhizal fungi and, while the effects of MHB on the formation of plant-fungal symbiosis and on plant health have been well documented, the specific molecular mechanisms by which MHB drive gene regulation in plant roots leading to these benefits remain largely uncharacterized.</AbstractText>
<AbstractText Label="RESULTS" NlmCategory="RESULTS">Here, we investigate the effects of the bacterium Pseudomonas fluorescens SBW25 (SBW25) on aspen root transcriptome using a tripartite laboratory community comprised of Populus tremuloides (aspen) seedlings and the ectomycorrhizal fungus Laccaria bicolor (Laccaria). We show that SBW25 has MHB activity and promotes mycorrhization of aspen roots by Laccaria. Using transcriptomic analysis of aspen roots under multiple community compositions, we identify clusters of co-regulated genes associated with mycorrhization, the presence of SBW25, and MHB-associated functions, and we generate a combinatorial logic network that links causal relationships in observed patterns of gene expression in aspen seedling roots in a single Boolean circuit diagram. The predicted regulatory circuit is used to infer regulatory mechanisms associated with MHB activity.</AbstractText>
<AbstractText Label="CONCLUSIONS" NlmCategory="CONCLUSIONS">In our laboratory conditions, SBW25 increases the ability of Laccaria to form ectomycorrhizal interactions with aspen seedling roots through the suppression of aspen root antifungal defense responses. Analysis of transcriptomic data identifies that potential molecular mechanisms in aspen roots that respond to MHB activity are proteins with homology to pollen recognition sensors. Pollen recognition sensors integrate multiple environmental signals to down-regulate pollenization-associated gene clusters, making proteins with homology to this system an excellent fit for a predicted mechanism that integrates information from the rhizosphere to down-regulate antifungal defense response genes in the root. These results provide a deeper understanding of aspen gene regulation in response to MHB and suggest additional, hypothesis-driven biological experiments to validate putative molecular mechanisms of MHB activity in the aspen-Laccaria ectomycorrhizal symbiosis.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Shinde</LastName>
<ForeName>Shalaka</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Argonne National Laboratory, Biosciences Division, 9700 S. Cass Ave., Argonne, IL, 60439, USA.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Present address: Oil-Dri Innovation Center, 777 Forest Edge Rd., Vernon Hills, IL, 60061, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zerbs</LastName>
<ForeName>Sarah</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Argonne National Laboratory, Biosciences Division, 9700 S. Cass Ave., Argonne, IL, 60439, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Collart</LastName>
<ForeName>Frank R</ForeName>
<Initials>FR</Initials>
<AffiliationInfo>
<Affiliation>Argonne National Laboratory, Biosciences Division, 9700 S. Cass Ave., Argonne, IL, 60439, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Cumming</LastName>
<ForeName>Jonathan R</ForeName>
<Initials>JR</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology, West Virginia University, 53 Campus Dr, Morgantown, WV, 26506, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Noirot</LastName>
<ForeName>Philippe</ForeName>
<Initials>P</Initials>
<AffiliationInfo>
<Affiliation>Argonne National Laboratory, Biosciences Division, 9700 S. Cass Ave., Argonne, IL, 60439, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Larsen</LastName>
<ForeName>Peter E</ForeName>
<Initials>PE</Initials>
<AffiliationInfo>
<Affiliation>Argonne National Laboratory, Biosciences Division, 9700 S. Cass Ave., Argonne, IL, 60439, USA. plarsen@anl.gov.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Department of Bioengineering, University of Illinois at Chicago, 851 South Morgan St., Chicago, IL, 60612, USA. plarsen@anl.gov.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>01</Month>
<Day>03</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>BMC Plant Biol</MedlineTA>
<NlmUniqueID>100967807</NlmUniqueID>
<ISSNLinking>1471-2229</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012329">RNA, Bacterial</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012331">RNA, Fungal</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018749">RNA, Plant</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053263" MajorTopicYN="N">Gene Regulatory Networks</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055399" MajorTopicYN="N">Laccaria</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038821" MajorTopicYN="N">Mycorrhizae</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D057865" MajorTopicYN="N">Plant Immunity</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018517" MajorTopicYN="N">Plant Roots</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011551" MajorTopicYN="N">Pseudomonas fluorescens</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012329" MajorTopicYN="N">RNA, Bacterial</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012331" MajorTopicYN="N">RNA, Fungal</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018749" MajorTopicYN="N">RNA, Plant</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D036226" MajorTopicYN="N">Seedlings</DescriptorName>
<QualifierName UI="Q000276" MajorTopicYN="N">immunology</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016415" MajorTopicYN="N">Sequence Alignment</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013559" MajorTopicYN="N">Symbiosis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059467" MajorTopicYN="N">Transcriptome</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Ectomycorrhiza</Keyword>
<Keyword MajorTopicYN="N">Laccaria bicolor</Keyword>
<Keyword MajorTopicYN="N">Mycorrhiza helper bacteria</Keyword>
<Keyword MajorTopicYN="N">Populus tremuloides</Keyword>
<Keyword MajorTopicYN="N">Receptors</Keyword>
<Keyword MajorTopicYN="N">Transcriptomics</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>06</Month>
<Day>19</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>12</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>1</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>1</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>3</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30606121</ArticleId>
<ArticleId IdType="doi">10.1186/s12870-018-1610-0</ArticleId>
<ArticleId IdType="pii">10.1186/s12870-018-1610-0</ArticleId>
<ArticleId IdType="pmc">PMC6318872</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Mol Microbiol. 2001 Sep;41(5):999-1014</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11555282</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2002;3(2):REVIEWS1004</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11864376</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2003 Jan 22;19(2):185-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12538238</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Microbiol. 1962 Mar;27:509-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14476553</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2005 Oct;168(1):205-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16159334</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2005 Nov;71(11):6673-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16269696</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1976 Aug;73(8):2788-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16592342</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Sep 15;313(5793):1596-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16973872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2006 Nov 16;444(7117):323-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17108957</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Comput Biol. 2006 Nov 24;2(11):e161</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17121460</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2007;175(4):743-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17688589</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2007;176(1):22-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17803639</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2008 Mar 6;452(7183):88-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18322534</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2008;59(5):1115-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18349054</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2009;10(3):R25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19261174</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2009;10(5):R51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19432983</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Microbiol. 2009;63:541-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19575558</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2009 Dec;32(12):1682-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19671096</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2009 Aug;4(8):701-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19820333</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2011 Feb;89(4):917-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21104242</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Mol Biol Rev. 2011 Dec;75(4):583-609</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22126995</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2012 Jun;63(11):4015-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22563122</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Res Notes. 2012 Jun 07;5:275</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22676709</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2012 Nov;196(3):713-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22861491</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2013 Apr;33(4):357-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23100257</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Jpn Acad Ser B Phys Biol Sci. 2012;88(10):519-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23229748</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2014 Mar;65(5):1331-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24449385</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2014 Jun 3;111(22):8299-304</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24847068</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2014 Oct 24;5:579</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25386184</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2015 Oct;208(1):79-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25982949</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2015 Sep 02;16:658</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26328611</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mycorrhiza. 2016 Oct;26(7):769-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27262434</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2017 Jan 4;45(D1):D331-D338</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27899567</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2017 Mar 21;8:348</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28377780</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Microbiol. 2018 May 03;9:853</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29774013</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Illinois</li>
</region>
<settlement>
<li>Chicago</li>
</settlement>
<orgName>
<li>Université de l'Illinois à Chicago</li>
</orgName>
</list>
<tree>
<country name="États-Unis">
<noRegion>
<name sortKey="Shinde, Shalaka" sort="Shinde, Shalaka" uniqKey="Shinde S" first="Shalaka" last="Shinde">Shalaka Shinde</name>
</noRegion>
<name sortKey="Collart, Frank R" sort="Collart, Frank R" uniqKey="Collart F" first="Frank R" last="Collart">Frank R. Collart</name>
<name sortKey="Cumming, Jonathan R" sort="Cumming, Jonathan R" uniqKey="Cumming J" first="Jonathan R" last="Cumming">Jonathan R. Cumming</name>
<name sortKey="Larsen, Peter E" sort="Larsen, Peter E" uniqKey="Larsen P" first="Peter E" last="Larsen">Peter E. Larsen</name>
<name sortKey="Larsen, Peter E" sort="Larsen, Peter E" uniqKey="Larsen P" first="Peter E" last="Larsen">Peter E. Larsen</name>
<name sortKey="Noirot, Philippe" sort="Noirot, Philippe" uniqKey="Noirot P" first="Philippe" last="Noirot">Philippe Noirot</name>
<name sortKey="Shinde, Shalaka" sort="Shinde, Shalaka" uniqKey="Shinde S" first="Shalaka" last="Shinde">Shalaka Shinde</name>
<name sortKey="Zerbs, Sarah" sort="Zerbs, Sarah" uniqKey="Zerbs S" first="Sarah" last="Zerbs">Sarah Zerbs</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000750 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000750 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:30606121
   |texte=   Pseudomonas fluorescens increases mycorrhization and modulates expression of antifungal defense response genes in roots of aspen seedlings.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:30606121" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020