Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The effects of terracing and vegetation on soil moisture retention in a dry hilly catchment in China.

Identifieur interne : 000679 ( Main/Exploration ); précédent : 000678; suivant : 000680

The effects of terracing and vegetation on soil moisture retention in a dry hilly catchment in China.

Auteurs : Wei Wei [République populaire de Chine] ; Xinran Feng [République populaire de Chine] ; Lei Yang [République populaire de Chine] ; Liding Chen [République populaire de Chine] ; Tianjiao Feng [République populaire de Chine] ; Die Chen [République populaire de Chine]

Source :

RBID : pubmed:30180339

Abstract

In water-restricted erosive mountains environments, large-scale vegetation plantation and diverse terracing measures have been widely used as the most powerful ecological-restoration tools to control water erosion and improve local degraded ecosystems, further enhancing the complexity of terracing, vegetation, and soil water relationships. In this study, 70 sampling sites across different hillslopes were selected and used for biweekly soil water measurement in a typical loess hilly catchment of China. The most typical terracing measures (broad bench terraces-BBT, narrow bench terraces-NBT, level ditch terraces-LDT, counter-slope terraces-CST, and half-moon terraces-HMT) and introduced vegetation types (wild peach, apricot, arborvitae, poplar, and Chinese pine) were included in the study. Based on multi-site measurements, the effects of terracing and vegetation on the profile of soil moisture dynamics at a depth of 2 m were analyzed. Results show that terracing generally has a very positive role in soil water enhancement. Compared with slope risers, terracing can increase soil moisture by 0.87% (±0.82%) to 37.71% (±9.01%), which benefits ecological restoration. However, the effects of various terracing measures on soil water differed. BBT measures were the most powerful in soil water recharge, with an incremental ratio of 21.88%, which is 4.94, 5.95 and 4.21 times that of CST (5.19%), LDT (4.43%) and NBT (3.68%), respectively. The existence of different plant communities can increase the uncertainties and complexities of soil water status. Introduced trees and shrubs generally induce a greater reduction in soil water than do natural plants in similar environmental conditions. The few remaining original hillslopes covered by natural grasses can better preserve soil water, because of large differences in water use strategies between planted and natural species. Such findings are expected to provide important references for the proper selection of terracing and artificial vegetation toward enhancing the efficiency of water conservation and ecological restoration in dry and degraded regions.

DOI: 10.1016/j.scitotenv.2018.08.037
PubMed: 30180339


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The effects of terracing and vegetation on soil moisture retention in a dry hilly catchment in China.</title>
<author>
<name sortKey="Wei, Wei" sort="Wei, Wei" uniqKey="Wei W" first="Wei" last="Wei">Wei Wei</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Lab of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Lab of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Feng, Xinran" sort="Feng, Xinran" uniqKey="Feng X" first="Xinran" last="Feng">Xinran Feng</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Lab of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Lab of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Yang, Lei" sort="Yang, Lei" uniqKey="Yang L" first="Lei" last="Yang">Lei Yang</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Lab of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Lab of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Chen, Liding" sort="Chen, Liding" uniqKey="Chen L" first="Liding" last="Chen">Liding Chen</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Lab of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China. Electronic address: liding@rcees.ac.cn.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Lab of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Feng, Tianjiao" sort="Feng, Tianjiao" uniqKey="Feng T" first="Tianjiao" last="Feng">Tianjiao Feng</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Lab of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Lab of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Chen, Die" sort="Chen, Die" uniqKey="Chen D" first="Die" last="Chen">Die Chen</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Lab of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Lab of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:30180339</idno>
<idno type="pmid">30180339</idno>
<idno type="doi">10.1016/j.scitotenv.2018.08.037</idno>
<idno type="wicri:Area/Main/Corpus">000C76</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000C76</idno>
<idno type="wicri:Area/Main/Curation">000C76</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000C76</idno>
<idno type="wicri:Area/Main/Exploration">000C76</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The effects of terracing and vegetation on soil moisture retention in a dry hilly catchment in China.</title>
<author>
<name sortKey="Wei, Wei" sort="Wei, Wei" uniqKey="Wei W" first="Wei" last="Wei">Wei Wei</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Lab of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Lab of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Feng, Xinran" sort="Feng, Xinran" uniqKey="Feng X" first="Xinran" last="Feng">Xinran Feng</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Lab of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Lab of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Yang, Lei" sort="Yang, Lei" uniqKey="Yang L" first="Lei" last="Yang">Lei Yang</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Lab of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Lab of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Chen, Liding" sort="Chen, Liding" uniqKey="Chen L" first="Liding" last="Chen">Liding Chen</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Lab of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China. Electronic address: liding@rcees.ac.cn.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Lab of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Feng, Tianjiao" sort="Feng, Tianjiao" uniqKey="Feng T" first="Tianjiao" last="Feng">Tianjiao Feng</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Lab of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Lab of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Chen, Die" sort="Chen, Die" uniqKey="Chen D" first="Die" last="Chen">Die Chen</name>
<affiliation wicri:level="1">
<nlm:affiliation>State Key Lab of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Lab of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">The Science of the total environment</title>
<idno type="eISSN">1879-1026</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In water-restricted erosive mountains environments, large-scale vegetation plantation and diverse terracing measures have been widely used as the most powerful ecological-restoration tools to control water erosion and improve local degraded ecosystems, further enhancing the complexity of terracing, vegetation, and soil water relationships. In this study, 70 sampling sites across different hillslopes were selected and used for biweekly soil water measurement in a typical loess hilly catchment of China. The most typical terracing measures (broad bench terraces-BBT, narrow bench terraces-NBT, level ditch terraces-LDT, counter-slope terraces-CST, and half-moon terraces-HMT) and introduced vegetation types (wild peach, apricot, arborvitae, poplar, and Chinese pine) were included in the study. Based on multi-site measurements, the effects of terracing and vegetation on the profile of soil moisture dynamics at a depth of 2 m were analyzed. Results show that terracing generally has a very positive role in soil water enhancement. Compared with slope risers, terracing can increase soil moisture by 0.87% (±0.82%) to 37.71% (±9.01%), which benefits ecological restoration. However, the effects of various terracing measures on soil water differed. BBT measures were the most powerful in soil water recharge, with an incremental ratio of 21.88%, which is 4.94, 5.95 and 4.21 times that of CST (5.19%), LDT (4.43%) and NBT (3.68%), respectively. The existence of different plant communities can increase the uncertainties and complexities of soil water status. Introduced trees and shrubs generally induce a greater reduction in soil water than do natural plants in similar environmental conditions. The few remaining original hillslopes covered by natural grasses can better preserve soil water, because of large differences in water use strategies between planted and natural species. Such findings are expected to provide important references for the proper selection of terracing and artificial vegetation toward enhancing the efficiency of water conservation and ecological restoration in dry and degraded regions.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">30180339</PMID>
<DateCompleted>
<Year>2018</Year>
<Month>10</Month>
<Day>03</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>10</Month>
<Day>04</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1879-1026</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>647</Volume>
<PubDate>
<Year>2019</Year>
<Month>Jan</Month>
<Day>10</Day>
</PubDate>
</JournalIssue>
<Title>The Science of the total environment</Title>
<ISOAbbreviation>Sci Total Environ</ISOAbbreviation>
</Journal>
<ArticleTitle>The effects of terracing and vegetation on soil moisture retention in a dry hilly catchment in China.</ArticleTitle>
<Pagination>
<MedlinePgn>1323-1332</MedlinePgn>
</Pagination>
<ELocationID EIdType="pii" ValidYN="Y">S0048-9697(18)33006-7</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.scitotenv.2018.08.037</ELocationID>
<Abstract>
<AbstractText>In water-restricted erosive mountains environments, large-scale vegetation plantation and diverse terracing measures have been widely used as the most powerful ecological-restoration tools to control water erosion and improve local degraded ecosystems, further enhancing the complexity of terracing, vegetation, and soil water relationships. In this study, 70 sampling sites across different hillslopes were selected and used for biweekly soil water measurement in a typical loess hilly catchment of China. The most typical terracing measures (broad bench terraces-BBT, narrow bench terraces-NBT, level ditch terraces-LDT, counter-slope terraces-CST, and half-moon terraces-HMT) and introduced vegetation types (wild peach, apricot, arborvitae, poplar, and Chinese pine) were included in the study. Based on multi-site measurements, the effects of terracing and vegetation on the profile of soil moisture dynamics at a depth of 2 m were analyzed. Results show that terracing generally has a very positive role in soil water enhancement. Compared with slope risers, terracing can increase soil moisture by 0.87% (±0.82%) to 37.71% (±9.01%), which benefits ecological restoration. However, the effects of various terracing measures on soil water differed. BBT measures were the most powerful in soil water recharge, with an incremental ratio of 21.88%, which is 4.94, 5.95 and 4.21 times that of CST (5.19%), LDT (4.43%) and NBT (3.68%), respectively. The existence of different plant communities can increase the uncertainties and complexities of soil water status. Introduced trees and shrubs generally induce a greater reduction in soil water than do natural plants in similar environmental conditions. The few remaining original hillslopes covered by natural grasses can better preserve soil water, because of large differences in water use strategies between planted and natural species. Such findings are expected to provide important references for the proper selection of terracing and artificial vegetation toward enhancing the efficiency of water conservation and ecological restoration in dry and degraded regions.</AbstractText>
<CopyrightInformation>Copyright © 2018. Published by Elsevier B.V.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Wei</LastName>
<ForeName>Wei</ForeName>
<Initials>W</Initials>
<AffiliationInfo>
<Affiliation>State Key Lab of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Feng</LastName>
<ForeName>Xinran</ForeName>
<Initials>X</Initials>
<AffiliationInfo>
<Affiliation>State Key Lab of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yang</LastName>
<ForeName>Lei</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>State Key Lab of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>Liding</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>State Key Lab of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China. Electronic address: liding@rcees.ac.cn.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Feng</LastName>
<ForeName>Tianjiao</ForeName>
<Initials>T</Initials>
<AffiliationInfo>
<Affiliation>State Key Lab of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chen</LastName>
<ForeName>Die</ForeName>
<Initials>D</Initials>
<AffiliationInfo>
<Affiliation>State Key Lab of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>08</Month>
<Day>04</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Netherlands</Country>
<MedlineTA>Sci Total Environ</MedlineTA>
<NlmUniqueID>0330500</NlmUniqueID>
<ISSNLinking>0048-9697</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Drylands</Keyword>
<Keyword MajorTopicYN="N">Loess Plateau</Keyword>
<Keyword MajorTopicYN="N">Soil moisture</Keyword>
<Keyword MajorTopicYN="N">Terrace</Keyword>
<Keyword MajorTopicYN="N">Vegetation restoration</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>05</Month>
<Day>14</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2018</Year>
<Month>07</Month>
<Day>23</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>08</Month>
<Day>03</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>9</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2018</Year>
<Month>9</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>9</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30180339</ArticleId>
<ArticleId IdType="pii">S0048-9697(18)33006-7</ArticleId>
<ArticleId IdType="doi">10.1016/j.scitotenv.2018.08.037</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
<settlement>
<li>Pékin</li>
</settlement>
</list>
<tree>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Wei, Wei" sort="Wei, Wei" uniqKey="Wei W" first="Wei" last="Wei">Wei Wei</name>
</noRegion>
<name sortKey="Chen, Die" sort="Chen, Die" uniqKey="Chen D" first="Die" last="Chen">Die Chen</name>
<name sortKey="Chen, Liding" sort="Chen, Liding" uniqKey="Chen L" first="Liding" last="Chen">Liding Chen</name>
<name sortKey="Feng, Tianjiao" sort="Feng, Tianjiao" uniqKey="Feng T" first="Tianjiao" last="Feng">Tianjiao Feng</name>
<name sortKey="Feng, Xinran" sort="Feng, Xinran" uniqKey="Feng X" first="Xinran" last="Feng">Xinran Feng</name>
<name sortKey="Yang, Lei" sort="Yang, Lei" uniqKey="Yang L" first="Lei" last="Yang">Lei Yang</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000679 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000679 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:30180339
   |texte=   The effects of terracing and vegetation on soil moisture retention in a dry hilly catchment in China.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:30180339" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020